

Bulletin

Official Bulletin of Italian QRP Club

www.arimontebelluna.it Gennaio 2007 info@arimontebelluna.it

-BOLLETTINO TRIMESTRALE **QUARTERLY BULLETIN**

SOMMARIO	
TerraMassa	Pag. 3
Miracle Wip Antenna	Pag. 5
HF - Due El. "Portatile"	Pag. 8
Reception SDR	Pag. 12
Kiss Testing Gear	Pag. 14
Qrp AMQ9 144 MHz	Pag. 16
Balun	Pag. 22
Attività	Pag. 30
WW QRP Top List	Pag. 31
Classifiche Contest	Pag. 32
Prossimi appuntamenti	Pag. 39

RU3RM ORP(3W)

Op. Art A.Golunov ex RA3RFH FIRST CQ IN '89

Hanno collaborato:

I1BAY IQRP # 309 - I3FFE IQRP # 4 - IK2NBU IQRP # 001 -IK3EDQ IQRP # 460 - ISOVSU I8/1659-RC IQRP # 659 - F1BEM IQRP # 488 - G4FON - Ing. Tristano Dal Canton - 9H1FQ

e la Sezione ARI di Montebelluna

LA CARTINA DI PEPE

A cura di Franz I3FFE I QRP # 4

(QUANDO SI DICE L'ENTUSIASMO!)

E' da parecchio tempo che, per varie e molteplici ragioni, mi capita di fare delle considerazioni sulle regole civili di convivenza che stanno molto rapidamente abbandonando questa nostra stranissima società, rendendoci conseguentemente la vita sempre meno "divertente". Vi prego di considerare con dolcezza e con comprensione le virgolette fra le quali ho messo il termine "divertente". Significa che avrei messo volentieri qualche altro aggettivo ben più pregnante, ma ho preferito mettere questo che mi è parso, come dire, "divertente". Perdonatemi questo sofisma e passiamo ai fatti.

Mi riferisco ad un paio di mie cartine di pepe prima di questa che si chiamava "Malgrado tutto e tutti". Per rinfrescarci la memoria, molto sinteticamente dirò che scrivevo all'ARI chiedendo loro che a noi dell'I QRP CLUB sarebbe piaciuto avere uno spazio elastico su RR visto che noi del CLUB ci identifichiamo nell'ARI. Avremmo quanto meno apprezzato un cenno di saluto del CD della nostra Associazione tipo "ehilà ragazzi, complimenti per la vostra attività con le basse potenze, auguri per tutto e per tutti, ma spazi per ora su RR non ce ne sono", e inoltre proponevo ai nostri amici soci sparsi in eguale misura in tutta l'Italia di eventualmente pensare di riunire i QRPer della propria regione per dei minicongressini in vista poi di un bel congresso nazionale, comprendendo naturalmente anche gli OM della zona tre nella quale felicemente vivo e gli OM della zona sette dalla quale provengo. Inoltre avevo pensato progettato alcune altre iniziative delle quali, per non annoiare me stesso e voi, non ri-parlerò. Basterà leggersi le precedenti cartine di pepe. Ma torniamo all'ARI e ai congressini regionali QRP. Sono passati diversi mesi e quindi penso che abbiate diritto di sapere come è andata questa mia speranzosa iniziativa.

Ho parlato ad un muro, ho parlato nel deserto. Nessuno mi ha degnato nemmeno di una parola. Faccio presente che ormai siamo circa ottocento iscritti al CLUB, e rappresentiamo tutte le regioni italiane.

Premetto che appartengo a quella categoria di persone alle quali hanno insegnato le regolette di base del buon comportamento (in alcuni casi si chiamano regole di buona educazione), premetto che appartengo a quella categoria di persone alle quali hanno insegnato che la prima cosa da fare è avere rispetto di se stessi, premetto che appartengo a quella categoria di persone alle quali hanno insegnato che non bisogna mai insistere (ne va della propria dignità), premetto che appartengo a quella categoria di persone alle quali hanno insegnato che insistendo troppo senza avere uno straccio di riscontro si cade nel patetico, premetto che appartengo a quella categoria di persone alle quali hanno insegnato che il patetico è una cosa bruttissima e, last but not least, premetto che appartengo a quella categoria di persone alle quali hanno insegnato che parlare al muro e parlare in un deserto non è molto divertente, tra l'altro, il problema è del muro e del deserto e non il proprio.

Tutto ciò premesso, ho tirato le conseguenze che ora mi procuro il piacere di esporvi. L'ARI non rispondendoci, o è distratta da altri problemi, o non sa nulla di noi (cosa di cui dubito fortemente), oppure ha sorvolato graziosamente sulle regole generali di comportamento. Nessuno dei nostri iscritti si è poi appalesato per eventualmente iniziare a pensare a qualche riunioncella de visu fra appassionati delle basse potenze.

Questi sono i fatti e le mie considerazioni le ho appena scritte, per cui penso che abbiate ora diritto di sapere come mi comporterò. Mi pare ovvio e banalissimo. Visto dunque che le mie cartine di pepe hanno tutto tranne che il pepe, visto che mi sono stufato di ripetere sempre le stesse cose, visto che ho moltissime altre cose da fare, visto che se c'è una cosa per la quale non sono assolutamente tagliato è l'atteggiamento lamentoso e patetico, ho deciso che questa sarà la mia ultima cartina di pepe. Auguro un magnifico anno nuovo a tutti gli OM, auguro buona salute a tutti gli OM, auguro buoni DX a tutti gli OM, resterò sempre tenacemente e pervicacemente affezionato all'ARI (credo di essere vicino ai sessant'anni di appartenenza) e passo quindi la parola a chi vorrà prendersela, augurando a tutti una bella buona notte ai suonatori. Naturalmente spero e mi auguro come sempre che il vino che vorrete bere nelle prossime feste sia sempre della migliore qualità!

Ovviamente NON alle prossime! Franz Falanga I3FFE IQRP # 4

Terra....massa.....contrappeso....

Di I1BAY IQRP # 309

Non è il grido del marinaio di vedetta di Colombo alla scoperta dell'America, né un termine geografico, non fisico, né tanto meno scomodiamo la filosofia....è solo quello che serve per trasmettere "onde radio" a un radioamatore con le sue antenne.

Sì, perché bisogna che ci mettiamo in testa che la "terra" fa parte integrante del circuito elettrico che ci permette di "irradiare", cioè, in fondo, la scoperta fondamentale di Marconi. Tutti i libri che si rispettino parlando di antenne, accennano alla fondamentale importanza teorica e pratica della terra, poi passano a descrivere centinaia di antenne dando per scontato che tutti abbiano capito il prologo. Ma non è cosi ! Ho scritto qualche cosa sulle antenne portatili in montagna , dunque raccorciate ma ho detto anche quanto sia utile che l'antenna sia "grande" quando si mette un'antenna per la casa, soprattutto se verticale, e l'importanza della "terra" dove la si pianta, e anche del circostante che si ha attorno!

Non so se è rimasto sedimentato qualcosa. Ho avuto molte domande su i radiatori, nessuna sul contrappeso! Non ho tema di ribadire che fare una buona terra, massa, contrappeso costa più che la stessa antenna. Ma tutta questa cura è determinante per la riuscita! Molti mettono, quando va bene, si e nò un radiale per banda su un tetto e ora dilagano anche i radiali trappolati, poi per terra, una puntazza e via, a misurare "le onde stazionarie" e se queste vanno bene, fanno CQ felici ed incoscienti!

E questo, forse in modo diverso, anche per antenne a polarizzazione orizzontale. Mi hanno scritto , fatto e-Mail con quesiti come: Io e lui, (parlando del radioamatore vicino) abbiamo la stessa antenna, lo stesso rtx, non abbiamo swr e stiamo forse a cinquecento metri lontani e lui arriva sempre più forte! Come mai ?? Ma non si chiedono in quei cinquecento metri, in quel chilometro, in quei chilometri, quale è la differenza del terreno, del circostante e delle riflessioni che ne conseguono. Senza andare a scomodare formule ma solo usando il buon senso viene da sé che se l'antenna è montata dove il circostante "assorbe" energia invece che riflettere, la differenza sarà a sfavore, e così anche per la terra che, come detto e ripetuto fa parte integrante del circuito irradiante.

La Ri (resistenza di radiazione), la capacità e l'induttanza efficaci, l'altezza, la potenza irradiata determinano la resa dell'antenna senza quasi conseguenze per le onde stazionarie, tanto da lasciar dormire tranquilli i molti che hanno solo quello strumentino per restare quieti!

Infine bisogna anche rendersi conto che quando trasmettiamo o ascoltiamo le onde radio vanno e vengono dagli strati ionizzati, SI, condizionate dallo stato di ionizzazione e dunque variabile dai periodi decennali, dall'altezza dello strato, dato dal giorno , dalla notte e dalla stagione MA ANCHE, anche al ritorno sulla terra, che fa da specchio, e dal tipo di "terra" che incontrano. Certo che i continenti stanno fermi (si fa per dire), i mari sono sempre là e dunque la variabile che fa discutere sono gli strati e la loro condizione di ionizzazione.

Ma per esempio, per noi italiani non è lo stesso trasmettere per Est o per Ovest a pari chilometri di distanza o potenza, perché verso Ovest incontriamo l'Atlantico, perfettamente riflettente, mentre verso Est incontriamo l'Asia, cioè terra, parzialmente riflettente.

Cosi come non è lo stesso trasmettere da una nave in mezzo al mare o da terra, dove, oltre agli assorbimenti parassiti e al noise, si deve considerare la "qualità" della terra che si ha sotto. Insomma allora richiamo alla necessità di tenere presente il fattore "terra" molte volte dimenticato.

Andando per il mondo ho ascoltato il mondo sia per mare che per aria e vi posso assicurare che le "Radio" che si ascoltavano meglio provenivano sempre da posizioni di terra attentamente studiate, non certo, purtroppo, come capita ai radioamatori che hanno antenne dove abitano. Io ho casa nella ridente, floreale e canora Sanremo e cioè in fondo a una di quelle valli tipiche della Liguria, con montagne tutto attorno di

BOLLETTINO GENNAIO 2007

1200/1300 m. e dove le montagne vanno subito in mare, dove il clima ne gode, i fiori sono belli e i radioamatori si incazzano parecchio. Così appena ho smesso i calzoni corti e sono" diventato saputo" si sono quietate le movimentazioni delle antenne e ho cominciato a movimentare l'ubicazione in toto e al massimo della libidine ho messo su antenne proprio a 1300m.

Dunque il massimo che potevo fare, io radioamatore, che avevo avuto la sfortuna di nascere in fondo ad una valle, con strade che passano due o trecento metri più in alto di tutte le antenne costruite. Certo che lassù non ci sono paragoni....poi però i paragoni li fai quando vai VHF o anche HF e ti muovi per altri monti per il Sota e ti accorgi che il motivo è sempre lo stesso la terra, la qualità della terra.

Da queste parti la conducibilità è bassa, i monti sono rocciosi, siamo in zona sismica di primo grado e quando si buca un monte si trova ancora lava ribollente, dunque gli assorbimenti sono grandi e anche andando in mare, sottocosta dal Golfo del Leone a Capo Noli l' RX quasi si ammutolisce, e così in parecchie zone d'Italia che ho avuto modo di testare personalmente; ci sono zone dove esistono miniere o depositi minerali di tipi più diversi, e allora....bisogna dire: viva le isole isolate in mezzo al mare? Dunque... viva i Caraibi! Non per motivi turistici, certo, ma radiantistici!

A TUTTI I LETTORI DEL BOLLETTINO IQRP CLUB

LA REDAZIONE E LA SEZIONE ARI DI MONTEBELLUNA AUGURANO

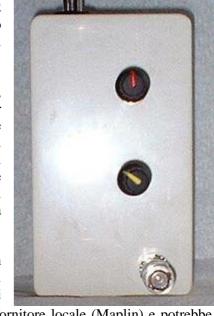
BUONE FESTE E FELICE 2007

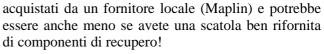
IORP Club BOLLETTINO GENNAIO 2007

RIFLESSIONI SULLA "MIRACLE WIP" ANTENNA

Di Ray Goff G4FON

Traduzione di IK3EDQ IQRP # 460

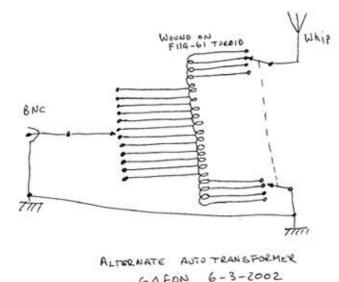

Introduzione


Il progetto "Miracle Whip" antenna è di sicuro interesse per coloro che desiderano avere un antenna portatile di piccolo ingombro. Comunque, osservando il progetto originale pubblicato in QST nel 2001, risulta evidente come la progettazione con autotrasformatore a reostato, sebbene innovativa, sia d'ostacolo alla realizzazione domestica dell'antenna. E' altrettanto evidente la difficoltà nella costruzione, poiché nell'esecuzione commerciale viene usato un totale diverso approccio.

Come ho detto, l'idea dell'autotrasformatore per accoppiare il corto stilo al trasmettitore è innovativa, se non addirittura originale. In osservazione a questo concetto, presi la decisione che la stessa avrebbe potuto essere meccanicamente semplificata se l'utilizzatore avesse accettato 2 controlli, uno per la pre-sintonia e l'altro per la sintonia fine. Quanto sopra saranno le basi del progetto modificato che vi presenterò di seguito.

Piuttosto che costruire a trasformatore con una presa ad ogni spira, questo progetto conta su di un trasformatore con una presa ciascuna per le prime quattro spire, una presa ogni quattro spire per le successive quarantotto e quindi ulteriori quattro spire con una presa ciascuna. Il commutatore rotante di pre-sintonia a 12 poli è connesso alle dodici prese ogni quattro spire. Per la sintonia fine un doppio commutatore rotante a quattro poli è collegato alle prese di entrambe le sezioni superiore ed inferiore del trasformatore, entrambe realizzate con una presa ciascuna spira.

Il progetto dovrebbe essere facile da riprodurre, ho usato componenti non specifici e richiede circa un pomeriggio per essere messo assieme. Il costo, in UK, è stato di circa £10 (€ 14,75 circa) con componenti



Il commutatore a dodici posizioni a sinistra nella foto provvede alla pre-sintonizzazione e il doppio commutatore a destra è dedicato alla sintonia fine.

Ciò di cui avrete bisogno

Antenna a stilo telescopica di 1,31 metri (50 inch); Anello di gomma adatto alla stessa; Scatola per assemblaggi da mm. 143L x 82P x 44H; Commutatore rotante 1 via a 12 po1i; Commutatore rotante doppio a 3 vie e 4 poli;

Toroide tipo FT114-61;

1,3 metri di filo in rame da 0,6 mm. (24 SWG);

Piccolo foglio di materiale per circuiti stampati in vetronite;

Connettore BNC per montaggio su scatola;

Vite M4 per fissare l'antenna;

Manopole per i commutatori.

Costruzione

Questa foto mostra l'interno della "Miracle Whip", con l'unità distesa su di un lato. Nell'angolo in basso a sinistra è montato il commutatore di pre-sintonia con il toroide fissato giusto sopra allo stesso. Nel centro vi è il commutatore per la sintonia fina e alla destra in connettore BNC. Si noti l'utilizzo della basetta in vetronite quale base e supporto.

Il toroide

Questa foto mostra un primo-piano dell' avvolgimento con le prese ben visibili. Lo stesso è avvolto in un toroide F114-61 e avvolgerlo porta via poco tempo, ma duro e difficile per le vostre dita. Avete bisogno di circa 122 cm. (4 foot) di filo smaltato, io ne ho usato del diametro di 0,6 mm. (24 SGW). Ho verificato essere preferibile piegare il filo a metà, iniziando così dal centro dell'avvolgimento. Ciò permette di maneggiare una più corta lunghezza di filo, rendendo però più difficile mantenere la giusta traccia dell'avvolgimento!

L'avvolgimento dovà essere composto di un totale di 56 spire quando terminato. Ci dovrà essere una presa dopo la prima, seconda e terza spira, quindi una presa ogni quattro spire per totali 12 prese ogni 4 spire e quindi quattro spire con una presa

ciascuna. E' meglio se le prime e le ultime quattro spire escano fuori radialmente dal toroide e le dodici prese per la pre-sintonia dalla parte superiore, come mostrato nella foto qui sopra.

La successiva operazione è di saldare il toroide al commutatore di presintonia, una volta terminato dovrebbe essere come nella foto qui a fianco. Notate le prese radiali nell'angolo in basso a sinistra.

Montaggio dell'antenna

La pare inferiore dell'antenna montata sulla basetta di vetronite. Notate che il rame è tagliato attorno in foro della vite per prevenire un corto a massa

L'antenna usata richiede una vite d'assemblaggio M4 che ho saldato ad un pezzo di basetta in vetronite. Ho usato il bordo di una lima per togliere il rame attorno al punto di montaggio per prevenire cortocircuiti a massa, ciò è chiaramente visibile nella foto di cui sopra. Nella parte superiore della scatoletta (non mostrata) ho praticato un

6

IORP Club BOLLETTINO GENNAIO 2007

foro per l'antenna a stilo, usando un anello in gomma per una realizzazione più accurata.

Assemblaggio

Non sono andato nel più fini dettagli circa la foratura e montaggio dei commutatori o del connettore BNC. Dalle foto potete avere un'idea di come posizionarli, ma lascerò a voi ricercare la migliore ergonomia nella vostra personale realizzazione di questo progetto. Una volta che i componenti sono fissati bisognerà unire le rimanenti connessioni con del cavo flessibile in rame.

Modalità operative

L'utilizzo di questa particolare antenna è simile all'originale "Miracle Wip". Una volta selezionata la banda nel FT817 e posizionata la manopola di sintonia fine in posizione due o tre, ruotate il commutatore di pre-sintonia per il massimo rumore di fondo o del caso sul più forte segnale se state ascoltando una stazione. Quindi uscite in trasmissione usando il controllo di sintonia fine per ottenere il più basso SWR Potrebbe essere necessario ruotare il commutatore di pre-sintonia in entrambi sensi di rotazione per ottimizzare la lettura del SWR. Una volta ottenuto il più basso SWR

prendere nota del settaggio così da poter fare velocemente QSY sulla banda in una successiva occasione. E' importante notare che questo progetto è solo adatto di livelli di potenza sino a 10 Watt massimo.

Prestazioni

L'antenna qui descritta potrà essere sintonizzata per un rispettabile SWR sui 40 metri e bande superiori. Molto è stato detto sulle prestazioni del progetto 'Miracle Whip', ma alla fine uno stilo di circa 122 cm. (48 inch) dovrà essere ben 'spremuto' per battere la maggior parte delle altre antenne. La mia esperienza è che non si avvicina alle prestazioni della antenna a loop disponibile sul mio sito web. Comunque, quando le bande sono in buone condizioni sarà senz'altro possibile fare QSO. Durante i test di questo progetto ho lavorato un OK1 in 15 metri (ad una distanza di oltre 1.100 Km.) con un rapporto di 439, dando in cambio un 559. Entrambi avevamo una potenza QRP di 5 Watt. Più tardi, sui 30 metri, ho lavorato un PA3 che mi ha dato 449 ed io a lui 589, entrambi sempre in QRP.

Se avete qualsiasi domanda, suggerimenti o sperimentato dei buoni collegamenti con quest'antenna, inviatemi una e-mail. Sarò interessato ad ascoltare le vs. esperienze e successi.

ray@qrpham.fsnet.co.uk

Antenna due elementi " portatile"

Di I1BAY IQRP # 309

Dura da diversi anni, sei per l'esattezza, il mio impegno SOTA, cioè quelli della montagna e della radio. In questo periodo, anche a non voler guardare il calendario gli effetti del tempo sulla mia seconda giovinezza cominciano a farsi sentire. Così, per mitigare l'affanno, dopo aver usato apparecchiature sempre più leggere, aver costruito antenne portatili verticali e multidipoli con lo scopo della resa nella leggerezza, quest'anno ho cercato di incrementare la resa soprattutto, comunque sempre tenendo d'occhio anche la leggerezza e sono

andato verso le beam a cercare questi possibili guadagni.

Il mio buon amico Gianfranco, I1XSG, che mi ha sempre dato una mano nella realizzazione delle antenne portatili, quest'anno, con la sua officina é occupato in costruzioni aeronautiche. Cosi sono andato a cercare qualche kit per una beam portatile, senza trovare nel mercato, neppure in Internet, risposte adeguate e convincenti.

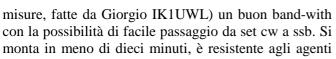
Alla fine, dopo mesi di ricerche, in California trovo una offerta che sembrava interessante.

Il kit però, era commercializzato solo in America. Aggirato l'ostacolo, superato il pagamento ragguardevole, pagata l'inflessibile Dogana, il trasporto, ecc, è poi subentrata la cocente delusione alla fine del montaggio: l'antenna non funzionava! Una stupidaggine del forse cinese USA: non aveva spellato i fili di rame rigido della bobina sotto le viti di contatto! Poi anche le misure date! Si è trattato di riassettare tutto "1'ambaradan" e senza un programma di calcolo, cosi, alla buona, alla vecchia maniera, tira giù tira su, accorcia, allunga, in una sinfonia infinita! Ma alla fine, incredibile, l'antenna ha funzionato!

Da questa esperienza ho ricavato l'impressione che facevo prima e a minor costo a farmela l'antenna. L'unica consolazione è aver trovato il materiale di grande qualità disponibile.

Io non volevo più far disegni, ma parlando con Gino IK3TZB, nostro Capo Redattore, Direttore e amanuense

del nostro Bollettino, lui, facendo finta di niente mi ha detto: "scrivi, scrivi i numeri in grande, non mi far venire matto per l'impaginazione sul nostro BO! ". E cosi via, la vista debole, la mano tremula e "liberissima" a mettere giù due dati, a raccontarvi di questa antenna, anche se ho dubbi di potervi coinvolgere! Quasi un peccato, perché, poi, superati gli inghippi, l'antenna va molto, molto bene.


Riassumo alcuni dati per vedere se riesco ad interessarvi alla costruzione pur sapendo la difficoltà, che però, per la verità, qualcuno (Carlo 12BNF) ha già superato con grande capacità e cipiglio fiero!

Dunque l'antenna è costruita impiegando alluminio avionico, per un peso complessivo di soli 4 Kg senza il cavo coax di alimentazione. Tutti i contatti filettati in ottone tubi e tubicini che si inseriscono uno nell'altro per la lunghezza massima di

80 cm, dunque perfettamente trasportabile in uno zaino. L'antenna può andare volendo su 20-15-10 e 6 metri più due bande intermedie warc. Guadagna 5,04 dB e un FB di 7,41 sotto i 28 Mhz (grazie dei dati, delle

atmosferici e la freccia di flessione è incredibilmente bassa per i diametri dei tubi impiegati.

Dati generali dei materiali impiegati:

Gli elementi: Nr 4 pezzi alluminio pieno, lunghezza 760 mm diam. 7 mm.

Nr 4 pezzi tubo alluminio lung.610 mm diam. est 10, int 6,5 con serravite all'estremo su rinforzo su tubo di 12x12 mm, all'estremo filetto ottone 12x9 mm per andare sulla bobina. Nr 4 pezzi tubo alluminio lung. 765 mm diam. 13 mm con estremo filetto ottone 12x9 mm (che viene dalla bobina)

Nr 4 pezzi tubo alluminio lunghezza 766 mm diam. 16 mm con filetto ottone 12x9 mm (che va alla crocera) con rinforzo sulla cima 20x13 mm con serravite.

Crocere:

Nr 1 isolata in teflon con un filetto interno femmina in ottone per contatto elettrico e sostegno delle due parti del riflettore.

Base 65 25x25 mm. Con due fori agii etremi della base per fissaggio sul boom.

Nr 1 isolata in teflon con due sezioni filettate in ottone e divise con prese per contatto banane per centrale dipolo. Base 65 x25x25 mm con due fori agli estremi per il fissaggio sul boom.

Spina: Nr 1 con contatto banane-BNC e centro dipolo per discesa cavo coax.

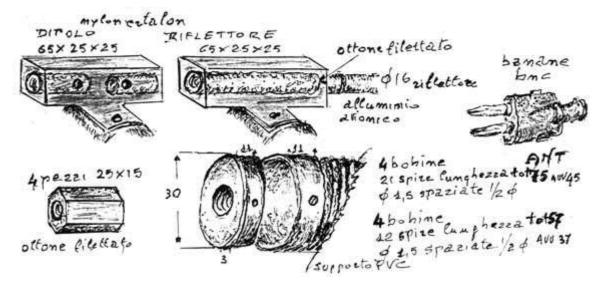
Boom: Nr 3 pezzi tubo lunghezza 760 mm, due di díam. 25 mm che si innestano in uno di 28 mm di

diam. con al centro l'attacco per il palo.

Queste le distanze fra centro e centro degli elementi al variare delle Bande: 20 metri 2,075 m.- 15 metri 1,970 m.-10 metri 1,705 m - 6 metri 1,450 m. (per le bande warc non cambiano le spaziature).

Bobine (due serie): Nr 4 supporto pvc lunghezza 73 mm diam. 31 mm. Filo rame rigido smaltato diam. 1,5 mm, 22 spire spaziate 1/2 diametro, lunghezza avvolgimento 45 mm.

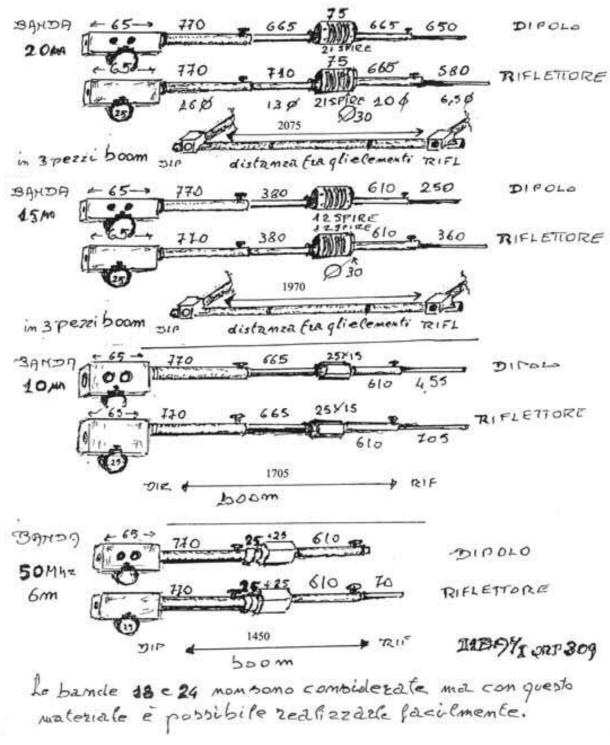
Nr 4 supporto pvc lunghezza 5; mm diam. 31mm. Filo rame rigido smaltato diam. 1,5 mm spaziate 1/2 diam. lunghezza avvol. 37 mm Tutte le bobine hanno sui fianchi un supporto in alluminio con presa al centro filettata femmina per raccordarsi agli elementi.


Raccordi: Nr 4 pezzi in ottone 25x15 per raccordare gli elementi quando vengono tolte le bobine

per le bande 10 m e 6 metri.

Dimensione degli elementi al variare delle bande e spaziatura boom : (misure in mm.)

20 metri	DIPOLO	2700x2	spaziatura del boom fra centro e centro elementi:
	RIFLETTORE	2870x2	2075
15 metri	DIPOLO	2035x2	
	RIFLETTORE	2145x2	1970
10 metri	DIPOLO	2525x2	
	RIFLETTORE	2775x2	1705
6 merti	DIPOLO	1430x1	
	RIFLETTORE	1500x2	1450


Consultare i disegni e le foto per maggiori dettagli.

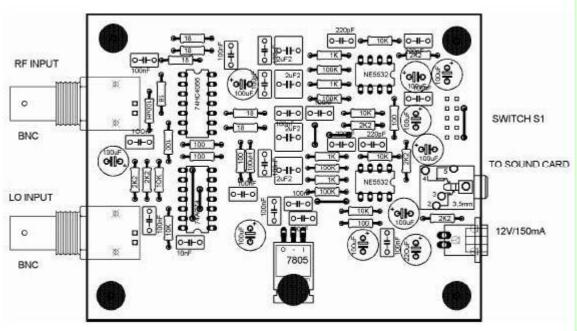
(N.D.R.) Ma continua ... il mai contento Attilio, dopo la stesura dell'articolo ci aggiorna su altre prove fatte sulla 2 elementi :

......avevo fatto alcune prove, per es se poni il settaggio in 28 dipolo 2500 spaziato 1068 riflettore 2700 si puo raggiungere guadagni di 5,35 e F/B 8, 6 con risonanza 28100.aggiungendo un direttore spaziato 1068 si arriva ad un guadagno 6,6 db con F/B 21,5 con la risonanza che sale a 28500.Certo che mettendo un direttore ingrandisce e appesantisce un pochino l'antenna. Certo che il F/B diventa invitante HI!....

RECEPTION SDR

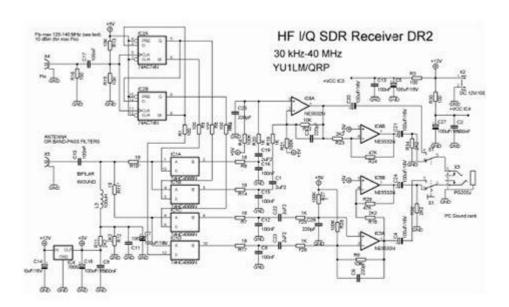
Di Jean Morino F1BEM IQRP # 488

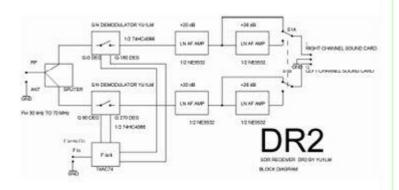
Il modo digitale per tutti!


Questo resoconto si rivolge in privato agli O.M di oltre 60 anni (anche gli altri!), che, come me, hanno conosciuto l' epoca (gloriosa!) dove era imperativo sapere adoperare il saldatore per montare il proprio tranceiver.

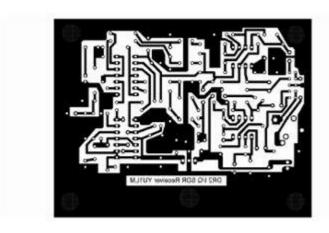
Come loro, successivamente, di fronte all'invasione degli apparecchi in provenienza dall'Asia, ho smesso l'attività radioamatoriale durante molti anni per ritornarci al momento della pensione. Leggendo l'articolo eccellente di A. Santucci IOSKK del bollettino di gennaio 2006, mi sono documentato via Internet sulle possibilità di ricevere in modo digitale e sono caduto sul sito da YU1LM, l'amico Tasa, che descrive assemblaggi ed i circuiti stampati corrispondenti.

Ho dunque deciso di lanciarmi in quest'avventura ed ho realizzato il ricevitore DR2 senza troppo crederci, in base alla semplicità dell'assemblaggio ed al costo di produzione ridicolo. Avevo realizzato, alcuni anni fà uno VFO di tipo DDS con uno AD9851 (ricevuto gratuitamente dalla Analog Devices) qui mi serviva di tanto in tanto da generatore. Per il software, ho scaricato Winrad (grazie I2PHD!) che ha riempito lo schermo del P.C ed ho proceduto alla messa sotto tensione del


modulo DR2.....silenzio...,niente di rumore di fondo.....ma ponendo il dito sul contatto "antenna" ho ricevuto qualche segnali CW!!.



12



Prestamente, monto un filtro di banda con 2 bobine e 3 condensatori, collegata l'antenna Conrad, risultato fantastico!

Dimensions single side PCB is 105x80 mm

Posso soltanto dare impressioni uditive ma in paragone con il mio FT817, sento un rumore di fondo migliore ed una chiarezza del suono incomparabile!

In futuro, e per fare di tutto per tenere in un piccolo contenitore, prevedo di costruire 4 o 5 O.L. a quarzo, che permettono di ricevere le bande amatoriale per segmenti di 96kcs che è il campionamento della mia sound card (audigy 2). Attenzione: la frequenza del O.L. deve essere frequenza di Ricezione X4!

L'amico Tasa propone un circuito con freq. O.L. uguale a freq. di RX (vedere il suo sito Internet).

Prossima tappa: il trasmettitore DT2! Però non ho trovato in software di comando TX. Lancio un CQ!

Pensate : costruire un ricetrasmettitore senza adoperare trapano, bottoni vari, e LCD ! lo fà tutto il PC, un sogno !

73 da Jean F1BEM/IQRP # 488

http://yu1lm.qrpradio.com/

13

Il nostro socio I7OHP Oscar Portoghese I QRP # 694

ci segnala la sua disponibilità a qso in CW QRS (bassa velocità).

Lo potete trovare a 7.005 – 7.010 dalle ore 09,30 alle 12,00 circa o a richiesta

e-mail a: elbugg@alice.it

KISS Testing gear

Di Paul Debono 9H1FQ

I have recently salvaged scores of xtals, screened coils, IFTs, and other useful components from discarged cordless phones, TV, and other consumer electronics. I had the problem of identifying and testing unknown components.

Figure 1 shows a barebones oscillator, which despite its simplicity I could test xtals from 90Khz (b7g glass) to well beyond 30Mhz. There is enough output to drive any DVM.

Figure 2 has a LED to indicate a go/no go status of marked xtals.

Always based on the same circuit, is figure 3, a simple, but effective micro inductance meter. A 10Mhz xtal will give a range from 1.5uh to 15uh. The IFTat the source of the 2N3819 is detuned to 10Mhz to kill harmonics, and thus will ensure correct readings.

A 32 Mhz xtal will give a range from 0.15 to 1.5 uh for VHF coils. However, you will need to change the coil at the source of the FET, to tune to 32 Mhz. The trimmer will compensate for xtal tolerance & calibrate the main tuning capacitor. There is no need to put a variable resistor on the meter, as the peak output is normally 150 ua. Calibration is by means of known Toko fixed coils. Initially you should disconnect the variable capacitor and the coil under test, and tune the 10.7 IFT to peak the meter.

Figure 4 is a simple means of checking resonance of a parallel tuned circuit. First adjust the output of the signal generator, by connecting the output to the 0.1uf capacitor, excluding the tuned circuit under test and the 5pf capacitor. Get a decent peak. Then connect the setup as shown, change the frequency of the signal generator, untill you get a peak, then read off the frequency at the signal generator. It is surprisingly accurate!

The 2N3819 reminds me of the EF91 (6AM6) valve, which works in many configurations, which other devices fail!

Paul Debono 9H1FQ

xtal tester

GO/NO GO Xtal Tester

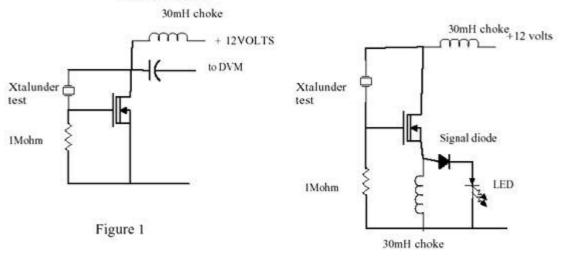


Figure 2

1.5uh to 15 uh L Meter

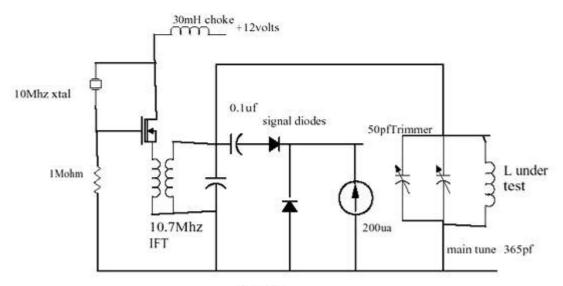
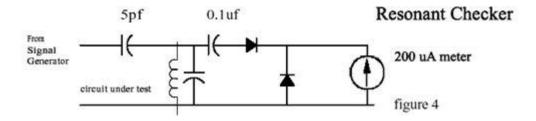



Figure 3

UPGRADE 144 MHZ PER QRP AMQ9

Di IK2NBU IQRP # 001

Cari Appassionati,

Nelle precedenti pubblicazioni di Radiokit di Febbraio, Marzo ed Aprile 2006, (NDR: nonché nei Bollettini IQRP di Aprile e Luglio 2006) ho descritto e completato il mio 9 bande HF QRP, apparato che in 1 anno di attività mi da molte soddisfazioni "ON AIR" con i suoi 10 watt SSB, su tutte e 9 le bande HF, propagazione permettendo.

Pensate che un Radioamatore auto costruttore deponesse le armi a questo punto ? Negativo !

Avevo infatti previsto già lo spazio per successivi Upgrade e modifiche possibili, prima fra tutte la banda VHF 144 SSB.... e nota bene per me una prima esperienza con il saldatore su questa banda. Ho fatto molto attività VHF, UHF e Satelliti ma sempre con apparati commerciali, un mio ritardo educativo motivato dalla scarsa strumentazione di laboratorio, che solo ora è in mio possesso e mi consente tarature decenti.

La prima scelta è stata ovviamente sfruttare tutto quello che è già presente nella radio: mixer, media frequenza a 9 MHZ, amplificazione BF ed accessori. Schemi e blocchi circuitali di queste parti sono rimaste esattamente gli stessi e già pubblicati su questa ottima rivista.

In partenza ho avuto qualche dubbio sul mixer, visto che la letteratura radiantistica suggerisce spesso mixer attivi a fet quando si sale di frequenza in VHF, ma il mixer EMT3 ad alta dinamica (+ 13 dbm) passivo si è rilevato ottimo e soprattutto silenzioso anche in 144 MHz.

Quindi ho inserito un relay commutatore RF all'uscita del mixer, per separare HF e VHF, creando 2 percorsi RX e TX paralleli per gestire ed aggiungere la nuova banda all'apparato.

Il DDS originale che ha funzione di VFO lavora a 135 MHz sfruttando le memorie disponibili, siamo un po' al limite di frequenza del suo funzionamento e il segnale generato ha un leggero scostamento di lettura nella banda laterale rispetto all'uso in HF. Invece dei soliti 1.5 Khz di Offset +/- fra portante letta e sintonia

USB/LSB, in 144 MHz la lettura è di soli 650 Khz, ma basta ricordarselo quando si centra il corrispondente in banda laterale e no problem.

PARTE TRASMITTENTE 144:

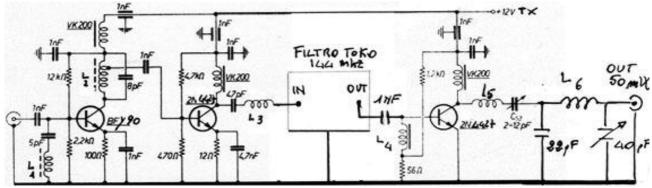
Per la parte di amplificazione TX del segnale ho fatto varie prove scegliendo schemi diversi che promettevano una amplificazione in classe AB, ma per arrivarci ed evitare distorsioni indesiderate sulla qualità della modulazione SSB non è stato semplice, la potenza finale ottenuta è di 5 Watt effettivi in antenna con ben 5 transistor nella catena di amplificazione.

Le regole consuete di filtraggio, distribuzione del guadagno nei vari stadi, e disaccopiamento delle alimentazioni, se valgono in HF, lo sono ancora di più in 144 dove è facile incappare in capacità residue dei circuiti stampati ed accoppiamenti indesiderati.

Per fortuna la tecnica di costruzione a zampa di ragno o come dicono gli inglesi "scarafaggio morto", non solo è facile e divertente ma aiuta molto a superare questi problemi, offrendo un bel piano di massa di riferimento (la basetta di rame), mentre con altri pezzetti di basetta si creano perfette schermature fra gli stadi.

Per le tarature è indispensabile disporre di un analizzatore di spettro o di un amico disponibile.

Non basta tarare infatti per la massima lettura RF come in HF, ma per la maggiore attenuazione delle armoniche, se vogliamo consegnare agli stadi successivi un segnale OK, i circuiti descritti non sono comunque


critici e la messa a punto è alla portata di molti.

Una precisazione, tutte le bobine sono fatte in aria con semplice filo di rame stagnato comprato al Castorama......l'argento lo abbiamo lasciato agli orefici! hi

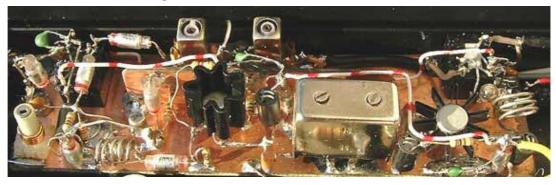
I relay di commutazione RX-TX, sono normali 12 V da circuito stampato ad eccezione di quello posto sul finale 5 Watt, dove si usa il tipo telefonico 12 V con lamelle di rame larghe 3 mm.

1° STADIO DI AMPLIFICAZIONE 50 mW e FILTRAGGIO RF

Per fortuna conservo fotocopie di tutti gli articoli interessanti e così pensate bene ho iniziato a lavorare su uno schema del Giugno 76, che fa uso di transistor facilmente reperibili, in 50 e 144 Mhz dove sono ottimi il BFY90 ed il 2N4427 che costa poco e rende tanto.

Questo stadio è stato montato tutto come da foto e le tarature non sono critiche, sebbene i livelli di guadagno siano medio alti per raggiungere i 50 mW partendo dall'uscita del Mixer.

IORP Club BOLLETTINO GENNAIO 2007



Rispetto allo schema originale che già presenta degli accordi LC con prese calcolate sulle bobine, fra i 3 transistor che lo compongono, ho apportato piccole modifiche e inserito un bel filtro elicoidale a 2 celle della TOKO per banda 144-146 prima dell'ultimo stadio.

Nell'ordine il segnale proveniente dal mixer passivo, raggiunge un filtrino di ingresso posto sulla base del BFY90, il segnale viene amplificato e accordato dal circuito risonante parallelo posto sull'alimentazione del collettore e passato al successivo 2N4427. Questo stadio è invece accordato in uscita con circuito serie e nota

bene su un carico resistivo di 50 ohm.

E' quindi logico e profittevole inserire in questo punto il filtro TOKO a

2 celle che ha pari impedenza, il filtro utilizzato ha codice Toko 271MT-1006, impedenza 50 ohm e perdita di inserzione di circa 4 dB. E' già pronto e schermato, fa una bella pulizia del segnale e si regola con le 2 viti superiori per il maggior segnale in uscita a 144.300 controllando sull'analizzatore di spettro, altre soluzioni di filtraggio sono possibili ma andremo incontro a perdite maggiori.

Segue un ultimo stadio 2N4427 che amplifica e accorda con circuito serie, ottenendo i 50 mW desiderati su carico di 50 ohm. Questo segnale è disponibile anche sul pannello frontale della radio su presa BNC Transverter... (1.2 GHZ?) si sa l'appetito viene mangiando radio e QRP!

Prima di passare al finalino vero e proprio da 5 Watt, il segnale attraversa un classico p greco regolabile che ripulisce ulteriormente il segnale utile di pilotaggio, eliminando le armoniche dell'ultimo transistor a ben – 60 db, la modulazione SSB a questo punto è già di buona qualità.

Non dimenticate di mettere buoni dissipatori a stella, su tutti i 2N4427 utilizzati.

PILOTA e FINALE 5 WATT SSB 144 MHZ

Con i 50 mW di partenza dobbiamo ora arrivare a 5 watt, i primi tentativi fatti con un solo transistor tipo 2N6080/81 sono stati insufficienti, ovvero la potenza c'era ma solo lavorando al limite della polarizzazione del finale, con il risultato che la classe AB lasciava il posto alla classe C, che va bene per il CW e FM ma è penosa in SSB, producendo una brutta modulazione.

Quindi sono necessari un primo stadio pilota 2N4427 che amplifichi sino a circa 200 mW e successivo finalino da 5 Watt, dopo una serie di ricerche in Internet trovo un ottimo apparato SSB in KIT degli amici

Radioamatori tedeschi DL-QRP-AG e per di più è un progetto recente di Ottobre 2005, con tanto di manuale (in tedesco) foto e schemi utili scaricabili dal web.

Lo potete trovare sul sito: www.QRPproject.de il suo autore Peter DL2FI merita un super compimento per il manuale di montaggio passo passo in stile Elecraft, ma Mittel Europeo!

Così la fratellanza del QRP mi ha permesso via internet di replicare e ispirarmi allo schema del di DL2FI,

dove sono risolti i problemi di polarizzazione per la SSB. Ho quindi ripreso gli ultimi 2 stadi del circuito sostituendo il Transistor originale 2SC1971 con un più reperibile in Italia. Montando il BLY87A da 7 watt a 175 Mhz (lo trovate dal Rota: www.rfmicrowave.it)

13,5V

13

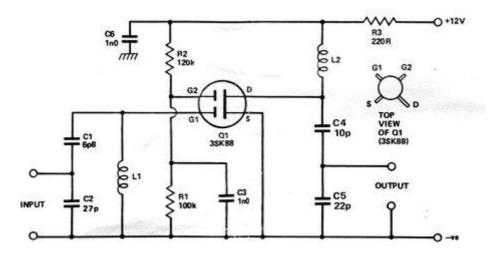
Ne avevo già 2 nel cassetto di recupero smontaggio Fiera a 10 euro.....così anche il borsellino ha sorriso, dopo aver bruciato transistor costosi nel tentativo di coniugare SSB e Classe C! hi

Il tutto è stato montato su un profilo a L , fatto da 2 basette doppia faccia saldate, con la solita tecnica a zampa di ragno di cui vedete particolare in foto, questa combinazione orizzontale verticale mi ha permesso di isolare le alimentazioni che corrono sul retro senza usare una scatola stagna. E' un buon compromesso, si ha lo stesso effetto di un condensatore passante sulle alimentazioni e si ottiene ordine e pulizia, oltre ai benefici RF necessari in VHF.

La taratura anche in questo caso va fatta con un occhio al wattmetro e un altro all'analizzatore di spettro, è preferibile montare il primo stadio 2N4427 e verificare l'uscita sino a circa 200 mW, successivamente installare il finale BLY87 e procedere alla regolazione dei vari condensatori variabili di accordo in uscita.

Anche per il filtro passa basso prima dell'antenna, dove sono previste delle capacità fisse di 22 pF, ho preferito mettere in parallelo 12 pF + Trimmer da 25 pF regolabile per ottimizzare in modo fine la potenza e il ros del TX.

BOLLETTINO GENNAIO 2007



PARTE RICEVENTE:

Il percorso di ricezione è baypassato in testa e in coda dai relay a 12 V.

Il segnale che arriva dall'antenna è amplificato da un pre a mosfet accordato a 144.300 Mhz.

Lo schema è semplice ed utilizza un 3SK88 che offre sino a 20 db di guadagno a basso rumore prima di arrivare all'ingresso del mixer. Nei comprai alcuni KIT in UK presso una ditta che ahimè non esiste più la Cirkit, per chi costruisce era la "mamma" dei QRP europei.

Vi riporto lo schema facilmente replicabile, le kanks Coil usate l'accordo ingresso uscita sono delle TOKO - MC108, le potete anche fabbricare con 7,5 spire di filo su supporto da 7 mm diametro nucleo regolabile, o se preferite farle in aria, ma dovrete poi "squizzarle" come dicono gli inglesi e sostituire i condensatori fissi con

trimmer variabili per facilitare la taratura.

La messa a punto di un pre di antenna per i 144 si fa con l'analizzatore, ma un metodo più empirico è anche leggere sullo s-meter della radio il segnale ricevuto e regolare per il massimo segnale e minor rumore di fondo, dopotutto non dobbiamo fare traffico EME.

Attenzione se spingete troppo con il guadagno, rischiate fischietti e autoscillazioni indesiderate.

Nel mio caso ho ottenuto +18 db di buona amplificazione RX, sufficienti davanti al mio mixer passivo. Lo schema del Preampli 144 è valido anche per risvegliare Vostri apparati duri di orecchie, tutta la basetta è di soli cm 5 x 2. E' stata montata a fianco del primo stadio di amplificazione con opportuno schermo di basetta di rame fra i due circuiti RX e TX.

Rack - IF completo

FINALMENTE ON AIR 2 M SSB!

Ecco il nostro 9 bande diventato ora 10, in QRP autocostruito SSB sui 2 Metri, e vai di QSO! Negli anni 70 i radioamatori con il saldatore in mano dai 144 alle Microonde erano un bel gruppo di sperimentatori, io ci sono arrivato 30 anni dopo, meglio tardi che mai! hi

Ouando faccio attività HF e VHF dichiarando i mezzi Hand Made utilizzati non cerco la gloria o i complimenti, ma semplicemente realizzo in pratica ciò che la nostra licenza di radioamatori mette bene in chiaro nel suo scopo "un percorso di auto apprendimento tecnico e culturale".

IORP Club **BOLLETTINO GENNAIO 2007**

20

		Induttanz	ze per Modulo Amplificazione e filtraggio da 5	0 mW
Bobine	Spire	Filo rame	Diametro e Spaziatura	Funzione
L 1	5	0,5 mm	Serrate su supporto plastico 5 mm diametro con nucleo regolabile	Filtro ingresso BFY 90
L 2	5	1 mm	Spaziate in aria diametro 5 mm	Accordo uscita BFY90
L 3	no	1 mm	Spezzone di filo rigido lungo 1,5 cm	Uscita in serie 2N4427
L 4	3	0,3 mm	Su perlina di ferrite / o VK200	Uscita filtro TOKO
L 5	3	1 mm	Avvolte in aria su diametro 8 mm interno	Accordo 2N4427
L 6	4	1 mm	Avvolte in aria su diametro 5 mm interno	Pgreco uscita RF 50 mW
		lr	nduttanze per Modulo Amplificazione 5 Watt	
Bobine	Spire	Filo rame	nduttanze per Modulo Amplificazione 5 Watt Diametro e Spaziatura	Funzione
Bobine L 9	Spire 5		-	Funzione Ingresso 2N4427
	_	Filo rame	Diametro e Spaziatura	
L 9	5	Filo rame 1 mm	Diametro e Spaziatura In aria spaziate diametro 6 mm	Ingresso 2N4427
L 9	5	Filo rame 1 mm 1 mm	Diametro e Spaziatura In aria spaziate diametro 6 mm In aria spaziate diametro 7 mm	Ingresso 2N4427 Alimentazione 2N4427
L 9 L 10 L 11	5 3 2	Filo rame 1 mm 1 mm 1 mm	Diametro e Spaziatura In aria spaziate diametro 6 mm In aria spaziate diametro 7 mm In aria spaziate diametro 6 mm	Ingresso 2N4427 Alimentazione 2N4427 Accordo Uscita 200 mW

Se guardate bene le foto del Rack di IF ,scoprirete anche un'altra novità del mio RTX fatto in casa, si chiama AM (chi ha detto che è morta ?), ma ne parleremo in un altro articolo.

73' de IK2NBU Arnaldo I QRP CLUB # 001 www.radioavventura.it

Stiamo attivando un forum per gli appassionati di qrp.

Naturalmente su : www.arimontebelluna.it

Abbiamo incontrato un giovane e brillante ingegnere, appassionato di antenne.

La sua tesi di laurea verteva sulle antenne utilizzate per misure e rilievi RF. Uno dei capitoli riguardava i balun. E' un argomento già molte volte trattato e approfondito sulle riviste dedicate ai Radioamatori, ma la chiarezza di esposizione, la completezza, la serietà e professionalità della fonte, ci hanno indotto a riproporre l'argomento. Sarà utile per i novice o a chi avesse ancora qualche dubbio sul funzionamento o sull'utilità di questo dispositivo.

Vi proponiamo quindi integralmente il capitolo 3 della tesi di laurea che l'Ing. Tristano Dal Canton ci ha gentilmente concesso di pubblicare.

BALUN - BILANCIAMENTO E ADATTAMENTO

Dell'Ing. Tristano Dal Canton

Capitolo 3 Bilanciamento e adattamento

3.1 Bilanciamento e Balun

Come si vedrà nel prossimo capitolo, la maggior parte delle antenne trattate sono di tipo bilanciato, nel senso che la corrente entrante in un morsetto dell'antenna è uguale ed opposta a quella presente nell'altro morsetto. In generale non è corretto collegare ad un'antenna bilanciata una linea di trasmissione sbilanciata quale il classico cavo coassiale. Infatti, le tensioni presenti ai terminali d'antenna cui la linea è collegata vengono sbilanciate rispetto a terra e sul la superficie esterna del conduttore esterno viene forzato il passaggio di correnti altrimenti inesistenti.

Tali correnti danno inevitabilmente origine ad irradiazione indesiderata da parte della linea stessa, per il semplice motivo che il campo che esse generano non viene neutralizzato dalla corrente che passa nel

In condizioni ideali, considerando un'antenna collegata a d un cavo coassiale, la corrente arriva all'antenna attraverso il conduttore centrale e torna alla sorgente percorrendo la superficie interna dello schermo del cavo. Tuttavia, essendo il cavo collegato ad una struttura bilanciata, come per esempio un'antenna a dipolo, parte della corrente di ritorno può fluire anche sulla superficie esterna dello schermo, la quale dà origine ad un imprevisto e indesiderato campo irradiato.

In presenza di un eventuale piano di massa, si verifica inoltre un accoppiamento capacitivo tra tale piano e i due conduttori del cavo, con la differenza che il conduttore esterno risente di un accoppiamento molto maggi ore rispetto a quello interno. Si verifica allora un drenaggio di corrente verso la massa, e questo determina appunto lo sbilanciamento della struttura.

La situazione è raffigurata in Figura 3.1, dove la corrente indesiderata è indicata con I3 e Zg rappresenta

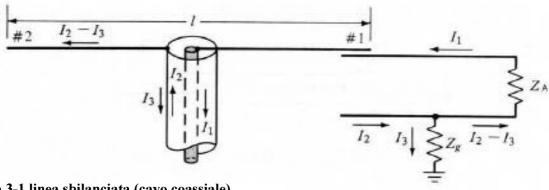


Figura 3-1 linea sbilanciata (cavo coassiale)

l'accoppiamento dello schermo con il piano di massa. Sezionando la Figura 3.1 si ottiene la Figura 3.2.

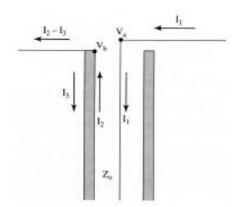


Figura 3.2: Sezione di un'antenna a dipolo collegata ad un cavo coassiale.

In conclusione, per pilotare un'antenna di tipo bilanciato con una linea sbilanciata, occorre interporre un dispositivo che eviti il passaggio di correnti indesiderate sull'esterno della linea. Si ricorre allora al balun, acronimo di BALance to UNbalance transformer. L'obiettivo del balun è quello di aumentare l'impedenza tra la superficie esterna dello schermo e la massa, in tal modo la corrente di ritorno tende affluire attraverso il percorso a minore impedenza, ossia quello rappresentato dalla superficie interna dello schermo.

Nelle Figure 3.3 e 3.4 è riportato l'andamento delle onde stazionarie di corrente per un dipolo a mezz'onda: nel caso bilanciato le correnti presenti nella linea di trasmissione sono uguali in modulo ma scorrono in direzione opposta, mentre

nel caso sbilanciato la corrente I1 è maggiore, in modulo, di I2, provocando una radiazione non desiderata.

Figura 3.3: Dipolo a mezz'onda con I1 = I2 (caso bilanciato).

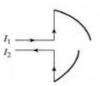


Figura 3.4: Dipolo a mezz'onda con I1 > I2 (caso sbilanciato).

La cosa importante da sottolineare è che è necessario impedire lo sbilanciamento proprio nel punto di collegamento tra la linea e l'antenna; è qui, infatti, che la corrente I3, incanalandosi lungo la superficie esterna del cavo, provoca lo sbilanciamento delle correnti nei bracci dell'antenna (vedi Figura 3.4). Un'altra osservazione da fare è che le correnti I1 e I2 presenti nel cavo coassiale sono in ogni caso schermate dall'esterno grazie allo schermo del cavo, è la corrente I3 che irradia e che quindi va soppressa.

3.1.1 Tipi di Balun

Balun a Bazooka

Il balun a bazooka consiste in uno schermo cilindrico, di lunghezza pari a $\lambda/4$, inserito attorno allo schermo del cavo coassiale e posto in cortocircuito con esso ad una estremità (Figura 3.5). Con questo schema si realizza perciò una particolare linea di trasmissione i cui conduttori sono lo schermo aggiunto e lo schermo esterno del cavo coassiale.

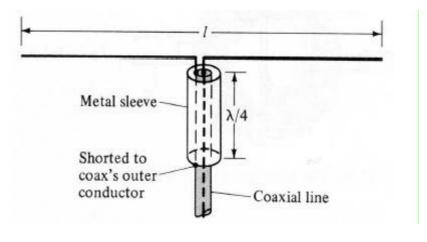


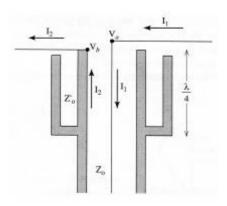
Figura 3.5: Balun a Bazooka.

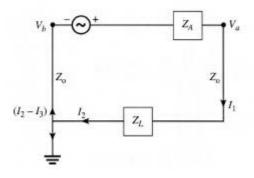
1) È bene ricordare che quando la linea è lunga un quarto d'onda, o suo multiplo dispari, si ha un inversione di impedenza: vale a dire che, se sul carico l a corrente è bassa (e la tensione è alta), l'impedenza d'ingresso sarà tale da richiedere corrente elevata (e bassa tensione); con ciò si realizza la trasformazione di impedenza. La relazione tra impedenza di carico e impedenza di ingresso per una linea a quarto d'onda è la seguente:

$$Z_i = rac{(Z_0')^2}{Z_l}$$
 Oppure: $Z_0' = \sqrt{Z_i \cdot Z_l}$

con Zi impedenza di ingresso, Zl impedenza di carico e Z'0 impedenza caratteristica della linea. Come pratica interpretazione dell'ultima formula, si può dire che, dovendo adattare tra di loro un generatore ed un carico di impedenza rispettivamente Zi e Zl, si dovrà usare una linea a $\lambda/4$ di impedenza caratteristica Z'0 pari alla radice quadrata del prodotto delle altre due.

Questa linea ha la particolarità di essere lunga $\lambda/4$ e di avere un estremo in cortocircuito: questo fa si che si comporti come un circuito aperto, ovvero con impedenza infinita. Di conseguenza risulta anche infinita l' impedenza tra schermo esterno e piano di massa (corrispondente a Zg); la corrente seguirà quindi il percorso che si desidera, incanalandosi subito sulla superficie interna dello schermo.




Figura 3.6: Sezione di un balun a bazooka.

In Figura 3.6 viene riportata la sezione del balun a bazooka (talvolta chiamato sleeve balun): si vede chiaramente come il manicotto e lo schermo del cavo formino una linea di impedenza caratteristica Z'0 che è cortocircuitata alla distanza di $\lambda 4$ dai terminali dell'antenna. Un'altra figura che rappresenta bene la situazione generale è la Figura 3.7, mentre uno schema circuitale della Figura 3.6 è mostrato in Figura 3.8, che illustra chiaramente come entrambi i terminali vedano un'alta impedenza (idealmente infinita) rispetto alla massa. La Figura 3.8 è equivalente alla Figura 3.9 in cui I1 e I2 sono uguali (situazione bilanciata). In questi circuiti viene indicata con ZA l'impedenza d'antenna e con ZL quella del ricevitore; con il simbolo di generatore si è voluto indicare le tensioni Va e Vb presenti sui bracci dell'antenna, ovvero la tensione di circuito aperto Voc = Va - Vb. Entrambe le figure rappresentano dunque il modello di circuito equivalente di Thevenin di un'antenna. Se l'antenna è adattata al carico (ricevitore) per il massimo trasferimento di potenza, la tensione di uscita in ricezione Vr sarà metà di quella di circuito aperto 2 .

2) Vale infatti la relazione (partitore di tensione):

$$V_r = V_{oc} \frac{Z_L}{Z_A + Z_L}$$

 V_b Z_a Z_a Z_b Z_b

Figura 3.7: Circuito equivalente nel caso sbilanciato.

Figura 3.8: Circuito equivalente del balun a bazooka.

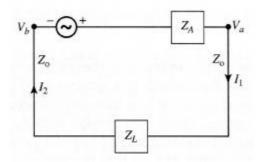
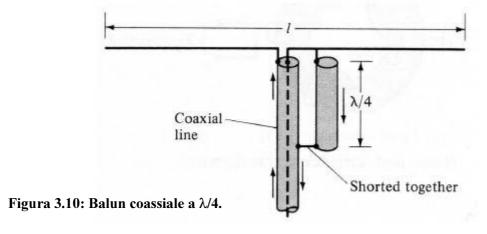
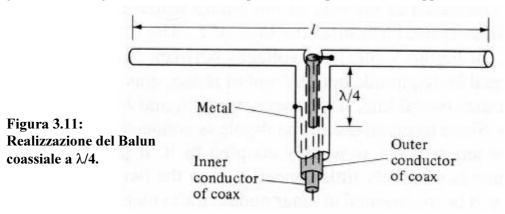
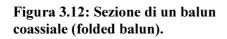
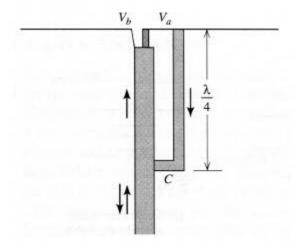



Figura 3.9: Circuito equivalente per una struttura bilanciata.


Balun coassiale a $\lambda/4$

Questo tipo di balun è sostanzialmente ricollegabile all'u so di tratti di linea a quarto d'onda quali circuiti risonanti in parallelo e che perciò presentano un percorso ad altissima impedenza per le correnti indesiderate. Il Balun coassiale a quarto d'onda prevede che un estremo della linea di trasmissione a $\lambda/4$ venga connesso allo schermo del cavo coassiale, mentre l'altro è collegato al ramo del dipolo che è connesso al conduttore interno del cavo (Figura 3.10).





Tornando alla Figura 3.1, si nota come le tensioni esistenti tra ciascuno dei due rami dell'antenna ed il piano di massa siano uguali in modulo ma sfasate di 180.; entrambe concorrono a causare un flusso di corrente lungo il conduttore esterno del cavo. Dal momento, però, che un terminale dell'antenna è connesso direttamente al conduttore esterno, la tensione Vb (vedi Figura 3.2) produce una corrente maggiore rispetto a quella prodotta da Va. Se le correnti I1 e I2 avessero lo stesso modulo, I3 sarebbe nulla. Si può eguagliare I1 e I2 collegando il conduttore centrale del cavo coassiale direttamente a quello e sterno; ovviamente ciò provocherebbe un corto circuito e di conseguenza l'antenna non irradierebbe o non riceverebbe nessuna componente di campo. Il collegamento i n parallelo come in figura, invece, provvede alla cancellazione di I3 senza compromettere il funzionamento del dispositivo. Il flusso di corrente all'esterno del lo schermo, infatti, viene cancellato nel punto in cui sono cortocircuitati insieme lo schermo e la sezione a $\lambda/4$. La lunghezza della linea ausiliaria, collegata in parallelo, è stata scelta tale per prevenire malfunzionamenti dell'antenna; è infatti noto che una sezione a quarto d'onda di linea a bassa perdita agisce come un invertitore di impedenza. In Figura 3.11 è raffigurata una realizzazione pratica e compatta del balun appena descritto.

In Figura 3.12, invece, si riporta la sezione d el balun: si vede come lo spezzone a $\lambda/4$ non incida sull'impedenza ZA dell'antenna e insieme al conduttore esterno del cavo formi una linea di trasmissione equivalente cortocircuitata nel punto C. Visto dai terminali dell'antenna, il cortocircuito viene idealmente trasformato in un'impedenza infinita, ottenendo l'effetto appena descritto.

È possibile realizzare dei dispositivi che provvedono non solo al bilanciamento delle correnti ma anche all'adattamento di impedenza (vedi paragrafo 3.2); uno di questi è il balun a $\lambda/2$ di Figura 3.13, che realizza una trasformazione di impedenza 3 da 4 ad 1 (4:1).

IQRP Club BOLLETTINO GENNAIO 2007

³⁾ Si ricorda che l'impedenza d'ingresso di una linea lunga un multiplo di mezza lunghezza d'onda ha esattamente lo stesso valore di quella di carico. Vale a dire che una tale linea può essere usata per trasferire un'impedenza da un punto all'altro senza modificarne il valore.

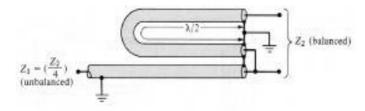
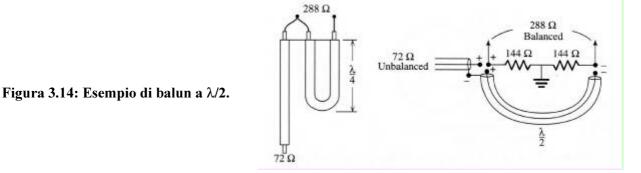
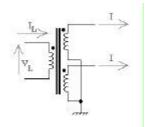



Figura 3.13: Balun coassiale a $\lambda/2$.

Il balun di Figura 3.14, per esempio, trasforma un'impedenza sbilanciata di 72Ω in una bilanciata di 288Ω . Per capire come funziona un balun 4 : 1 basta considerare lo schema in Figura 3.14, che mostra l'impedenza di 288Ω ripartita in due parti di 144Ω e la connessione tra queste a massa; l'impedenza di 288Ω è ancora bilanciata rispetto a terra.



Il terminale negativo è connesso attraverso uno spezzone a mezz'onda a quello positivo, mentre 72Ω è proprio il rispettivo valore del parallelo delle due resistenze da 144Ω . Ricordando inoltre che una linea lunga $\lambda/2$ ha la proprietà di invertire la fase della tensione e della corrente, questo tratto di cavo fa sì che la corrente, che sulla calza è uguale e contraria a quella presente sul conduttore centrale, arrivi sul braccio del dipolo invertita, e quindi uguale in modulo e fase a quella dell'altro braccio.

Balun a trasformatore

Quando le frequenze d'impiego sono piuttosto basse, la transizione bilanciato sbilanciato può essere effettuata ricorrendo a veri e propri trasformatori, in versioni più o meno convenzionali; anche se poco utilizzati, so no utili nei casi in cui le dimensioni lineari del bazooka potrebbero risultare eccessive. Uno schema di principio è mostrato in Figura 3.15: la corrente di alimentazione dell'antenna, proveniente dalla linea, viene fatta circolare nel primario del trasformatore(solitamente realizzato su di un nucleo toroidale, per ottenere un migliore accoppiamento), i cui secondari alimentano i due bracci del di polo in modo che le correnti siano identiche tra di loro. Avendo a che fare con un trasformatore, il dispositivo è in grado di funzionare abbastanza correttamente in un'estensione di banda abbastanza ampia (vedi paragrafo successivo). Nel caso venga utilizzato un nucleo sarà necessario limitare la potenza a livelli tali da non causare effetti

Figura 3.15: Schema di principio di un balun a trasformatore.

di surriscaldamento o saturazione del nucleo stesso. I primi tendono infatti a degradarne le proprietà magnetiche, mentre i secondi causano distorsione del segnale trasmesso e quindi la comparsa di emissioni spurie e indesiderate. Nel caso invece non si utilizzi un nucleo ferromagnetico, la dispersione di una parte del flusso concatenato causerà delle perdite non trascurabili nel dispositivo. Un altro vantaggio dell'utilizzo del trasformatore è che si ri esce ad ottenere, oltre al bilanciamento, anche l'adattamento di impedenza.

Bilanciamento a banda larga

Esistono molti altri modi per ottenere alimentazioni bilanciate, tutti con lo scopo di annullare la corrente che fluisce sulla superficie esterna dello schermo del cavo coassiale. Ad esempio è possibile aggiungere dei manicotti di ferrite attorno al cavo di alimentazione: questi si comportano come induttori di modo comune, ma è facile osservare che si tratta di un metodo molto rudimentale. L'induttanza avente lo scopo di bloccare il drenaggio di corrente indesiderata e la relativa irradiazione può essere realizzata sfruttando opportunamente la linea esistente, avvolgendola cioè come una bobina. Un altro è invece quello d i usare toroidi di ferrite come illustrato in Figura 3.16.

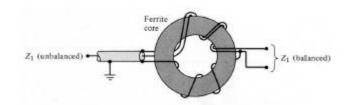
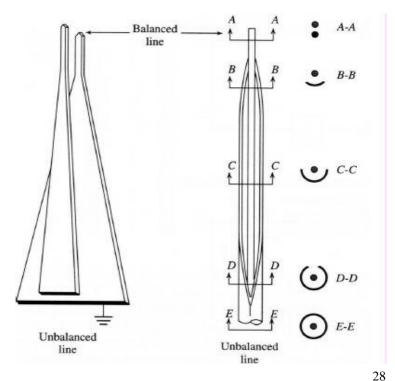



Figura 3.16: Balun a nucleo di ferrite.

In generale questi permettono un bilanciamento a larga banda (tipicamente il rapporto tra la massima e la minima frequenza di funzionamento è circa 4). Nel caso del balun a bazooka, invece, essendo fissa la lunghezza fisica l della linea di trasmissione, esiste solo un valore di frequenza per cui risulta $l = \lambda/4$, per cui il bilanciamento si ha solo per questa frequenza. È possibile costruire balun a larga banda assottigliando progressivamente una linea di tipo sbilanciato [3]; in Figura 3 .17 vengono riportati semplicemente due esempi (tapered balun).

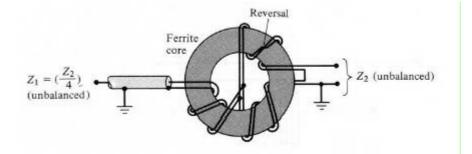
Figura 3.17: Esempi di balun a banda larga di tipo tapered balun: a sinistra per microstriscia, a destra per cavo coassiale.

IORP Club BOLLETTINO GENNAIO 2007

3.2. Adattamento di impedenza

Il bilanciamento dell'antenna è molto importante per ottenere una misura accurata delle emissioni irradiate: se il sistema costituito dall'antenna e dalla linea di trasmissione costituisce una struttura sbilanciata, può succedere che i dati misurati sembrino soddisfare le norme quando in realtà non è così. Tipicamente, questa differenza è dovuta al fatto che lo sbilanciamento della struttura ha modificato il diagramma di irradiazione dell'antenna, pe cui i dati non sono più perfettamente attendibili.

3.2 Adattamento di impedenza


Le onde stazionarie eventualmente esistenti lungo una linea di trasmissione sono sempre conseguenza di una riflessione di energia. L'unica riflessione di energia che possa aver luogo in un sistema antenna-ricevitore è quella che si verifica nel punto di congiunzione. Questo avviene quando il carico non presenta una resistenza identica all'impedenza caratteristica secondo cui la linea è stata realizzata. Al fine di ottenere un funzionamento ottimale, che coincide con il trasferimento totale di energia e conseguente assenza di onde stazionarie , dovrà essere messo in atto, fra linea ed antenna, un dispositivo che effettui il necessario adattamento tra l'impedenza caratteristica della linea e quella d'ingresso dell'antenna; solo in questo modo la resistenza di radiazione (vedi Paragrafo 2.2.1) dell'antenna può essere riflessa sulla linea come parte non reattiva e di valore appropriato.

Per le prove di emissione irradiata, è necessario compiere tali misure al variare della frequenza, in modo da poter interpretare rapidamente i dati ottenuti. Se, per esempio, si suppone di usare un dipolo a $\lambda/2$ per compiere misure di campo, al variare della frequenza si sarà costretti a modificare di volta in volta la lunghezza fisica dell'antenna. Un modo molto più pratico e vantaggioso , come si vedrà nel capitolo successivo, consiste nell'usare antenne per misure a larga banda; durante la taratura di quest' ultime, i dati rilevati vengono riportati generalmente su un grafico in cui si traccia l'andamento del fattore d'antenna al variare della frequenza.

I dati relativi al fattore d'antenna sono però da intendersi sotto due ipotesi: la prima è che l'antenna sia bilanciata, mentre la seconda è che l'impedenza di carico sia di 50-. L'antenna, come visto in precedenza, è collegata al ricevitore tramite un cavo: se anche l'impedenza caratteristica del cavo coassiale è di 50Ω , l'antenna vedrà ai propri morsetti un'impedenza di 50Ω come in sede di taratura.

È allora possibile procedere nella misura ed utilizzare in seguito la conoscenza delle perdite dovute al cavo in questione e del fattore d'antenna per ottenere i valori di campo incidente sull'antenna a partire dai valori di tensione visualizzati sull'analizzatore di spettro. Quando non c'è questo adatta mento, si ricorre ad un adattatore di impedenza [2], di cui si riporta un esempio in Figura 3.18.

Figura 3.18: Adattatore di impedenza a nucleo di ferrite.

ATTIVITA'

Franco ISOVSU ci scrive:

"... il primo ottobre scorso abbiamo portato a termine una bella attività di attivazione qrp dell'Isola di Quirra, EU-165. Il resoconto della giornata si può scaricare in pdf da: www.sardiniaqrp.com/attivitaa 1/quirra island QRP.pdf

Faremo altre attività di questo tipo a breve se il tempo ce lo permetterà. Mi piacerebbe poter fissare degli sked con altri amici in qrp, magari su altre isole.... o montagne.... "

Ed ecco una foto della giornata:

E questa è la bella QSL del nostro socio Salvatore IQRP # 659, che esercita con successo l'attività di SWl:

Come si può ben vedere ha inserito con orgoglio sulla qsl il logo del nostro Club. Un esempio da imitare.

Cogliamo l'occasione per ricordare a tutti di rispondere sempre alle cartoline degli SWL.

Chi pratica solo l'ascolto non fa parte di una categoria "minore" di radioappassionati, anzi, spesso raggiunge capacità tecniche e operative veramente elevate.

BOLLETTINO GENNAIO 2007

WW QRP Top List

Di RW3AA

Output power 5 Watts and less

To join and upgrade your data send e-mail to: rw3aa@list.ru

sta	tion	CW	SSB	Digital	Mixed(Total)	Score
1	OM3CUG	299 / 290	157 / 81	105 / 69	300 / 292	440
2	DL3KVR	283 / 249	169 / 134	-	286 / 256	383
3	SM5LWC	- / 168	- / 175	- / 29	- / 210	372
4	KF7MD	285 / 281	123 / 47	73 / 15	286 / 281	343
5	GM4ELV	129 / 126	210 / 196	-	235 / 227	322
6	N0AX	303 / 276	-	-	303 / 276	276
7	LY2FE	- / 193	- / 80	-	/ 195	273
8	GM3OXX	265 / 262	-	-	265 / 262	262
9	GM4YLN	268 / 262	-	-	268 / 262	262
10	NU4B	254 / 250	-	-	254 / 250	250
11	OK1DMP	204 / 170	90 / 59	32 / 18	209 / 174	247
12	UA3DGA	263 / 229	-	-	263 / 229	229
13	UA4ARL	228 / 224	-	-	228 / 224	224
14	OM2ZZ	162 / 126	82 / 50	31 / 15	162 / 126	191
15	DH0JAE	104 / 73	131 / 107	-	147 / 121	180
16	AD1C	153 / 146	46 / 21	-	158 / 151	167
17	SM0HPL	- / 167	-	-	/ 167	167
18	UA3OQ	-	153 / 153	-	153 / 153	153
19	RX3DOR	147 / 133	31 / 19	-	142 / 123	152
20	W7AIJ	190 / 148	-	-	190 / 148	148
21	RV3GM	106 / 101	47 / 36	21 / 2	107 / 101	139
22	DJ1YFK	186 / 135	-	-	186 / 135	135
23	HB9DQJ	182 / 135	-	-	182 / 135	135
24	UA3FY	156 / 98	10 / 4	55 / 33	157 / 100	135
25	GM3MXN	197 / 130	-	-	197 / 130	130
26	WB8B	165 / 115	-	-	165 / 115	115
27	RW3AA	100 / 64	41 / 8	63 / 39	112 / 76	111
28	M5AEF	64 / 40	111 / 67	-	115 / 71	107
29	WD3P	- / 105	-	-	/ 105	105
30	PE1MHO	11 / 11	93 / 93	-	104 / 104	104
31	ON7CC	125 / 100	-	-	125 / 100	100
32	AA8MI	100 / 100	-	-	100 / 100	100
33	IK1RDN	115 / 96	-	-	115 / 96	96
34	VK8AN	160 / 95	-	-	160 / 95	95
35	RU2FM	146 / 88	2 / 1	-	146 / 89	89
36	UA3LMR	96 / 58	49 / 25	-	99 / 62	83

stat	tion	CW	SSB	Digital	Mixed(Total)	Score
37	RA1FZ	135 / 76	-	-	135 / 76	76
38	OZ1BXM	81 / 75	-	-	81 / 75	75
39	RV3DBK	101 / 70	1 / 0	-	101 / 70	70
40	RU3ALN	-	-	101 / 69	101 / 69	69
41	EW6CM	117 / 68	-	-	117 / 68	68
42	RZ4AA	133 / 65	-	-	133 / 65	65
43	UR0ET	43 / 41	52 / 22	-	67 / 51	63
44	M1DUD	23 / 12	52 / 49	-	52 / 49	61
45	G3YMC	166 / 44	-	-	166 / 44	44
46	F5ADH	62 / 29	39 / 12	-	70 / 33	41
47	RV3APM	6/0	34 / 10	64 / 28	66 / 28	38
48	RX3DTY	124 / 28	34 / 7	16 / 2	126 / 32	37
49	RZ3GX	17 / 9	47 / 26	-	47 / 26	35
50	RK1NA	66 / 26	18 / 3	35 / 1	73 / 26	30
51	UT0MK	62 / 28	-	-	62 / 28	28
52	UA9LAK	61 / 17	39 / 8	-	64 / 20	25
53	RA9CEX	40 / 24	-	-	40 / 24	24
54	EA5AU	20 / 20	-	-	20 / 20	20
55	RA3GFV	40 / 10	16 / 6	-	56 / 16	16
56	RA3XAR	14 / 14	-	-	14 / 14	14
57	RV9AZ	41 / 10	4 / 2	-	43 / 12	12
58	UA1AVA	64 / 9	16 / 1	-	64 / 9	10
59	RX9CBS	35 / 3	5 / 2	-	37 / 5	5
60	KC5GXL	2/2	1 / 1	-	3 / 3	3
61	I0SKK	70 / 0	75 / 0	-	88 / 0	0
62	UR3LCM	10 / 0	-	-	10 / 0	0

Swiss HTC-QRP Sprint 2006 Risultati

Rang	Call	Name	Pts Class	80	40	20	Rig	Antenna
				m	m	m		
1	HB9DAX	Manfred	234 QRP	39	16	5	K2	Dipol/2-Ele
2	OK2BWJ	Petr	224 QRP	26	33	0	FT-817	inv.V/LW
3	HB9DST	Paul	186 VLP	23	8	4	QRP-Plus	Dipole, Yagi
4	DJ5AA	Joachim	182 QRP	19	29	0	IC-746	End-Fed Wire 53m
5	UR5LF	Alex	178 QRP	10	5	32	IC-718, 5W	Delta, Sloper, 6 Ele
6	DF7TV	Tom	174 QRP	31	10	4	K2	Dip./Vert./X7-Beam
7	HB9TNW	Celso	166 QRP	2	16	5	FT-817	V-Dipol/Hexbeam
8	HB9TVK	Peter	148 QRP	25	14	2	ATSprint-IIIa	LW 35m
9	F6AUS	Serge	138 QRP	0	34	2	FT-817	Beam
10	HB9BGL	Michael	136 QRP	19	14	3	QRP-Plus/TS-140	Lw27m, Dipol
11	HB9IAB/p	Eric	132 QRP	19	14	0	FT-817	LW
12	DK5RY	Willi	120 QRP	17	10	3	FT-817	27m LW
13	PA3AFF	Piet	114 QRP	11	15	2	TS-130V	Doublet 2x13m
								33

	14	HB9WG	Eric	112	QRP	14	13	2	home brew	LW
	14	YL2CV	Vlad	112	QRP	11	19	0	UA1FA, 5W	
	16	DJ3GE	Ferdi	111	VLP	7	10	2	FT-817	FD-3
	17	HB9LCW	Silvio	106	QRP	18	10	0	IC-706	Double Zepp
	18	DL2OM	Roland	95	QRO	32	15	7	IC-746	Windom/3-Ele
	19	HB9FAI	Peter	92	QRP	11	6	6	FT-857	Loop, Windom
	19	PA0ATG	Adriaan	92	QRP	0	21	2	TS-120V	End-Fed Wire 20m/GPA-30
	21	DL2XL	Karl	90	QRP	2	18	3	hm 80m/K1	Dip/Quad-L./Mag-L.
	21	HB9HQX	Beat	90	QRP	20	3	1	DSW-80/OHR	FD4
	21	RX3PR	Eugeny	90	QRP	0	3	19	FT-817	Vertical
	24	I2AZ	Joe	86	QRP	0	15	4	FT-817	ECO 40-10m
	25	HB9DEO	Robi	82	QRP	7	11	3	K1, FT-817	Vertical
	26	HB9AFH	Hugo	76	QRP	14	3	3	K2	Dipol
	27	DL2NBY	Tom	74	QRP	8	12	0	TS-570DG	Sloper 17m
	27	HB9QA	Carlo	74	QRP	15	3	3	FT-817	Dipol, 4 Ele
	29	DL4FDM	Fritz	68	QRP	8	2	0	FT-817	Dipol 2x 10m
	30	HB9KOG	Robert	62	QRO	21	7	4	FT-990	Dipole
	31	RA6DB	Mike	55	QRO	8	5	20	FT-1000	4ele, inv Vee
	32	OZ7KDJ	Klaus	44	QRP	0	12	0	QRP-Plus	Sloper
	32	RW3AI	Valery	44	QRP	2	8	3	IC-7800, 5W	CP6, Diamond
	34	DL8HK	Karen	36	QRP	0	7	0	FT-817	DIPOL
	35	DJ2GL	Robert	34	QRP	6	3	0	CO/PA hm	?
	36	HB9RE	Fritz	29	QRO	2	14	0	IC-775	50m LW
	37	HB9UH	Hans	19	QRO	9	1	0	Ten Tec Omni	LW 60m
	38	DG8VE	Eric	18	QRP	0	2	3	FT-817	2x6m inv.V indoor
	39	YL3DX	Alec	14	QRO	0	8	0	IC-746 Pro	Dipole
	40	HB9DOZ	Martin	10	QRP	3	0	0	FT-847	Dipol
	41	UA3AAP	Vlad	2	QRP	0	0	1	TS-50	Vertical
*		HB9HC	Tom		QRP	20	15	7	IC-756	End-Fed Wire 30m
			HB9BSH							
*		PA0RBO	Rob		QRP	_ 3	1	0	_K2	Hor.Loop/Dipole
						136	465	155		

^{**} Checklogs

Solo alcuni dei commenti:

Joachim, DJ5AA

Leider hier 20m Totalausfall, QSY mit I2AZ und HB9RE ergebnislos. Dadurch blieb noch Zeit um 2 Stunden spazieren zu gehen. Ein paar mehr HB9-Stn hätte ich mir gewünscht!

Das war das erste Mal beim HTC-Sprint, wenn's klappt auch 2007

Serge, F6AUS

73 to all my QRP-Friends living in HB9-Land

Hugo, HB9AFH

Inspite of changing my home this weekend found approx one hour time to join the contest

Robi, HB9DEO

Sehr freundliche Op's, HAM-Spirit at ist best

Paul, HB9DST

Surprising that 80m was the workhorse band this year; didn't hear any HB9 stations on 40m

Eric, HB9IAB

Peu de stations QRV par moment, je suis donc aussi sorti profiter du soleil ;-) Entendu un YL en 14 MHz, sinon rien! Bonne dernière heure en 80 mètres. A l'année prochaine en VLP! 73 à tous Eric

Karl, HB9QA

Conds. Auf 20 und 40 m waren nicht gerade gut!

BOLLETTINO GENNAIO 2007

I2AZ, Giuseppe

Also this year very poor conditions and number of QSL a little better then 2005.

Always very nice to work HTC and I enjoy it.

Klaus, OZ7KDJ

Where were the Swiss fellows? No Joy on 20m or 80m either.

Adriaan, PA0ATG

Many participants and good operating practice. Many contest friends. CU next year.

Alec, YL3DX

Remarks: sorry, but I had only 1,5 hour for operation in contest. My best 73 & DX to all participants.

Guido, HB9BQB, Kontest-Manager

Vielen Dank an alle Teilnehmer und die zahlreich eingegangenen Logs.

Ich hoffe auf weiterhin steigende Teilnehmerzahlen. Log einsenden ist Ehrensache egal wie viel QSO's. also dann...

Taste ölen und cuagn on 8.September 2007.

Classifiche del 20. O-QRP-Contest

(1./2. luglio 2006)

From: DL1RNN@DARC.DE

QRP-CONTEST-COMMUNITY (qrpcc)

05-November-2006

VLP = very low power, MP = moderate power a - c = Baender 80-20 HB = homebrew

	VLP		< 1 Watt		
Platz	 Call	Punkte	QSOs	Band	Rig
Tatz	Can	1 ulikte	QSOs	Dana	Kig
1	F8UFT	17759	94	abc	Argonaut 505
2	DK8SX *	6825	55	c "Zei	nnor" (20m monoband, PA VN66AF DC-RX)
3	DJ3GE	6762	51	bc	FT-817
4	DJ6FO	6536	58	abc	QRP+
5	LZ2RS	6156	45	bc	K1
6	DL2BXC *	5776	50	ac H	B-TRX PA KT913A HB TRX PA 2N2905A
7	I1BAY *	4988	41	abc	K1 KX1
8	OK1DMP	4768	47	bc	FT-817
9	OZ9KC *	4624	43	ab	HB-TRX 1W
10	DJ3KK *	4588	46	b	ELBC
11	OM3TY *	4290	51	abc	DOB80 TY40a NaxosS20
12	OZ9QM *	3978	51	b	HB TRX DC-RX PA 2N3553
13	SP7BCA *	3366	30	abc	HB TX "Piccolo" (80/40m) "Aquarius"
(SP5DDJ	(20m)				
14	OK1DZD *	2898	61	abc	HB TRX IF 4,2 MHz HB TRX IF 9,3
MHz PA	BSY34				
15	DL7VPE/p*	2639	28	abc	VXO-PA (2SC2166) VXO-FD-PA
(2SC3590	O) HB TRX IF 4 MH	[z			
16	DL2NH *	2225	30	b	DSW 40 (SW Labs)
17	DL4HG	1944	33	b	NorCal 40A

IQRP Club

V					
18	DK0VLP *	1562	22	ab	Piccolino (BD106) Ramsey QRP-40
19	IN3ZWF *	1422	28	b	DK6SX-TRX PA BD135
20	PA1B *	1408	30	b	HB TRX, RX superhet
20	TAID	1400	30	U	TID TKA, KA supernet
21	DL8UAW*	1240	20	ab	HB TRX (CW/SSB) PA BSY34
21 22		1081	14		K2
	TOSTETE			bc	
23	DK3GP *	870	19	b	SW+(40m)
24	DK0SZ *	696	16	a	Hari TX80-1
25	DF0AGC	432	21	abc	Argonaut 509
26	DG8VE	325	16	bc	FT-817
27	DL1GKE *	252	14	bc	K2
28	DK0FIH *	248	10	b	VXO-PA (2 tbs 400 mW)
29	DJ7ST *	192	6	a	VXO/TRPL-PA (EF13-EF14)
30	PA1W *	180	6	bc	K2
31	OH6DC *	144	5	c	HB TX, 9 MHz IF PA 2N3553 DC-RX
32	DK9KR *	15	2	b	K1
33	PA9RZ	8	1	c	IC-703
34	F5ZV *	1	1	b	HB TX, PA BD135
J - T	1 32 V	1	1	U	11D 1A, 1A DD133
	QRP		<5 Watt		
	QICI		V watt		
Platz	Call	Punkte	QSOs	Band	Rig
1 Iatz	Can	Tunkte	QSOS	Dana	Kig
1	OP5R *	55968	208	abc	K2
2	DL7UMK	52065	189	abc	FT-817
					1.1-01/
		20620	101	aha	V1
3	IZ1GAR	38628	184	abc	K2
4	PA/DL2XL*	37848	155	abc	K2, HB-TRX (80m)
4 5	PA/DL2XL* HB9DAX *	37848 31188	155 158	abc abc	K2, HB-TRX (80m) K2
4 5 6	PA/DL2XL* HB9DAX * I2AZ	37848 31188 30450	155 158 146	abc abc abc	K2, HB-TRX (80m) K2 FT-817
4 5 6 7	PA/DL2XL* HB9DAX * I2AZ DA0CW *	37848 31188	155 158	abc abc	K2, HB-TRX (80m) K2
4 5 6 7 MHz PA	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306	37848 31188 30450 30380	155 158 146 143	abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6
4 5 6 7 MHz PA 8	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ	37848 31188 30450 30380 28689	155 158 146 143	abc abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1
4 5 6 7 MHz PA 8 9	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR	37848 31188 30450 30380 28689 28440	155 158 146 143	abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2
4 5 6 7 MHz PA 8	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ	37848 31188 30450 30380 28689	155 158 146 143	abc abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1
4 5 6 7 MHz PA 8 9	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR	37848 31188 30450 30380 28689 28440	155 158 146 143 123 128	abc abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2
4 5 6 7 MHz PA 8 9	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR	37848 31188 30450 30380 28689 28440	155 158 146 143 123 128	abc abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2
4 5 6 7 MHz PA 8 9 10	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI	37848 31188 30450 30380 28689 28440 24752	155 158 146 143 123 128 113	abc abc abc abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703
4 5 6 7 MHz PA 8 9 10	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ	37848 31188 30450 30380 28689 28440 24752	155 158 146 143 123 128 113	abc abc abc abc abc abc abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd.
4 5 6 7 MHz PA 8 9 10 11 12 13	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX *	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522	155 158 146 143 123 128 113 104 111 100	abc abc abc abc abc abc abc abc abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2
4 5 6 7 MHz PA 8 9 10 11 12 13 14	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405	155 158 146 143 123 128 113 104 111 100 88	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK *	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088	155 158 146 143 123 128 113 104 111 100 88 127	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT *	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188	155 158 146 143 123 128 113 104 111 100 88 127 94	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166	155 158 146 143 123 128 113 104 111 100 88 127 94 79	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18 19	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p DL1HTX *	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895 14925	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96 78	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14 K2
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18 19 20	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p DL1HTX * UA3LMR	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895 14925 14310	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96 78 61	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14 K2 Efir-M"
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18 19 20	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p DL1HTX * UA3LMR DJ5AA *	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895 14925 14310	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96 78 61	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14 K2 Efir-M"
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p DL1HTX * UA3LMR DJ5AA * DL3ZM	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895 14925 14310	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96 78 61	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14 K2 Efir-M" K2 FT-817
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p DL1HTX * UA3LMR DJ5AA * DL3ZM DL5ZP *	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895 14925 14310 10976 10441 9741	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96 78 61 60 76 63	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14 K2 Efir-M" K2 FT-817 K2
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p DL1HTX * UA3LMR DJ5AA * DL3ZM DL5ZP * DK4CU	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895 14925 14310 10976 10441 9741 9384	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96 78 61	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14 K2 Efir-M" K2 FT-817 K2 HW-9
4 5 6 7 MHz PA 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	PA/DL2XL* HB9DAX * I2AZ DA0CW * 2SC1306 RA3BZ DJ3LR RW3AI DK3UZ G3VIP ON5EX * DL9CE YU1RK * OK2BTT * DL0NZ DJ6UB/p DL1HTX * UA3LMR DJ5AA * DL3ZM DL5ZP *	37848 31188 30450 30380 28689 28440 24752 20944 18768 18522 17405 17088 16188 16166 15895 14925 14310 10976 10441 9741	155 158 146 143 123 128 113 104 111 100 88 127 94 79 96 78 61 60 76 63	abc	K2, HB-TRX (80m) K2 FT-817 HB TRX 6 bds. 1st IF 5.2-5.7, 2nd IF 1.6 80: K2 40&20: KX1 K2 IC-703 Drake 2-NT, mfd. FT-301S K2 FT-817 20m TRX polyphase network DC HB-copy Argonaut 505 (FT-817) DTR-7 QRP-14 K2 Efir-M" K2 FT-817 K2

35

IQRP Club

		0.4.40		_	
27	DF2GN *	8460	63	bc	BlueCoolRadio (downreg. 5W)
28	DQ2006H	8385	81	bc	K2
29	RU2FM	8148	57	bc	HB QRP 40/20
30	DL1ARH	8003	48	abc	FT-817
		0000	.0		1101,
31	F5VBT	7742	3	abc	FT-707S
32	HA8LNT	7605	57	bc	Efir-M PA KT922B
33	SP3BOL *	7285	50	bc	HB TRX all tubes, PA 5763 (2x monoband
design)					
34	OK2BWJ	6808	50	ab	FT-817
35	DL1AAH	6680	66	c	IC-703
36	RX3AEW	6660	47	bc	FT817
37	9A/IV3GXZ	6162	50	bc	K1
38	НВ9ЈВО	6160	46	abc	FT-817
39	G3LHJ	5845	50	ac	80: Sparkford Kit 20: Oak Hills QRP Spirit
40	F8ALX	5624	40	abc	FT-817
41	OH3NQW*	5152	81	c	K2
42	LZ1MG	5106	39	bc	TS-120V
43	UA3QG	4860	57	c	FT-817
44	DL3MBE	4800	72	abc	FT-817
45	DL10D *	4710	67	abc	K2
46	OM7CG	4587	37	abc	FT-817
47	DL9HCW *	4403	35	abc	Sierra + QL-QRP-PA
48	F6ABI	4371	43	bc	Argonaut 509
49	EA5EF	4352	40	c	FT-817
50	OZ5AEV	4316	49	ab	IC-703
51	G0KRT	3813	45	abc	FT-817
52	DL6OZ	3811	34	abc	FT-817
53	DL9GWA*	3468	33	bc	KNE QRP-99
					-
54	DL9FBF *	3312	47	ab	K2
55	DL1AZK *	3296	31	bc	ELBC 40/20 (DJ3KK design SPRAT
94/95)					
,					
56	IK3TZB	3234	32	abc	Argonaut 505
,	IK3TZB DG4WT *	3234 3204	32 29	abc bc	Argonaut 505 K1
56 57	DG4WT *	3204	29	bc	K1
56 57 58	DG4WT * HB9RE	3204 2970	29 30	bc b	K1 K1
56 57 58 59	DG4WT * HB9RE OH5JJL *	3204 2970 2565	29 30 30	bc b c	K1 K1 SW20+
56 57 58	DG4WT * HB9RE	3204 2970	29 30	bc b	K1 K1
56 57 58 59 60	DG4WT * HB9RE OH5JJL * DL8DZV	3204 2970 2565 2553	29 30 30 34	bc b c bc	K1 K1 SW20+ FT-817
56 57 58 59 60	DG4WT * HB9RE OH5JJL * DL8DZV	3204 2970 2565 2553 2542	29 30 30 34 29	bc b c bc	K1 K1 SW20+ FT-817 QRP+
56 57 58 59 60 61 62	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ *	3204 2970 2565 2553 2542 2516	29 30 30 34 29 23	bc b c bc abc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project)
56 57 58 59 60 61 62 63	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB *	3204 2970 2565 2553 2542 2516 2418	29 30 30 34 29 23 24	bc b c bc abc bc abc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project)
56 57 58 59 60 61 62 63 64	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK	3204 2970 2565 2553 2542 2516 2418 2340	29 30 30 34 29 23 24 27	bc bc c bc abc bc abc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817
56 57 58 59 60 61 62 63	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB *	3204 2970 2565 2553 2542 2516 2418	29 30 30 34 29 23 24	bc b c bc abc bc abc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project)
56 57 58 59 60 61 62 63 64	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK	3204 2970 2565 2553 2542 2516 2418 2340	29 30 30 34 29 23 24 27	bc bc c bc abc bc abc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817
56 57 58 59 60 61 62 63 64 65	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK LZ1IQ *	3204 2970 2565 2553 2542 2516 2418 2340 2310	29 30 30 34 29 23 24 27 20 26	bc bc c bc abc bc abc bc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817 HB TRX IF 9 MHz PA KT921A
56 57 58 59 60 61 62 63 64 65 66 67	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK LZ1IQ * PI25ETL PA3AFF	3204 2970 2565 2553 2542 2516 2418 2340 2310 2225 2156	29 30 30 34 29 23 24 27 20 26 25	bc bc c bc abc bc abc bc bc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817 HB TRX IF 9 MHz PA KT921A TS-120V TS-130V
56 57 58 59 60 61 62 63 64 65 66 67 68	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK LZ1IQ * PI25ETL PA3AFF DL7ARV *	3204 2970 2565 2553 2542 2516 2418 2340 2310 2225 2156 2133	29 30 30 34 29 23 24 27 20 26 25 25	bc bc c bc abc bc bc bc bc bc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817 HB TRX IF 9 MHz PA KT921A TS-120V TS-130V HB Sierra-design
56 57 58 59 60 61 62 63 64 65 66 67 68 69	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK LZ1IQ * PI25ETL PA3AFF DL7ARV * F8BBL	3204 2970 2565 2553 2542 2516 2418 2340 2310 2225 2156 2133 2016	29 30 30 34 29 23 24 27 20 26 25 25 33	bc bc abc bc abc bc bc bc bc bc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817 HB TRX IF 9 MHz PA KT921A TS-120V TS-130V HB Sierra-design FT-817
56 57 58 59 60 61 62 63 64 65 66 67 68	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK LZ1IQ * PI25ETL PA3AFF DL7ARV *	3204 2970 2565 2553 2542 2516 2418 2340 2310 2225 2156 2133	29 30 30 34 29 23 24 27 20 26 25 25	bc bc c bc abc bc bc bc bc bc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817 HB TRX IF 9 MHz PA KT921A TS-120V TS-130V HB Sierra-design
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK LZ1IQ * PI25ETL PA3AFF DL7ARV * F8BBL DL2KDW *	3204 2970 2565 2553 2542 2516 2418 2340 2310 2225 2156 2133 2016 1946	29 30 30 34 29 23 24 27 20 26 25 25 33 43	bc bc c bc abc bc bc bc bc bc bc bc bc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817 HB TRX IF 9 MHz PA KT921A TS-120V TS-130V HB Sierra-design FT-817 SW-40+
56 57 58 59 60 61 62 63 64 65 66 67 68 69	DG4WT * HB9RE OH5JJL * DL8DZV DL1AVH DL8LRZ * DL6ABB * DL1UNK LZ1IQ * PI25ETL PA3AFF DL7ARV * F8BBL	3204 2970 2565 2553 2542 2516 2418 2340 2310 2225 2156 2133 2016	29 30 30 34 29 23 24 27 20 26 25 25 33	bc bc abc bc abc bc bc bc bc bc bc	K1 K1 SW20+ FT-817 QRP+ BCR (7-18 MHz, QRP-Project) Blue Cool Radio (QRP-Project) FT-817 HB TRX IF 9 MHz PA KT921A TS-120V TS-130V HB Sierra-design FT-817

36

IQRP Club

7 2	DI II DD 15	1001	2.5		EL D.C. 20/40
73	DL4LBB *	1771	26	b	ELBC 20/40
74	UA9LAK/UN7*	1750	15	c	HB TRX, PA KT920B 5W
75	DF5WI *	1653	27	b	Spatz 40m
76	DL0OG *	1602	30	ab	CO-PA (tubes)
77	LY80O	1566	27	c	HB TRX RA3AO design
78	DF3OL	1560	17	c	K2
79	IK6FPT	1541	19		MFJ-9020
				c	
80	DL1AVD *	1485	19	bc	K2
0.1	DI 4I A C *	1057	20	1	FLDC 40/00 (DIOWW 1 · ·)
81	DL4LAC *	1357	20	bc	ELBC 40/20 (DJ3KK-design)
82	DL7BW	1292	20	b	FT-817
83	DL6DSA/p*	1278	24	b	Mosqita 40m TRX, DDS-VFO
84	DL6AAF *	1224	20	abc	Sierra
85	DL3LBZ *	1216	22	b	ELBC 40/20 (DJ3KK)
86	G0BON *	1210	18	b	SW-40
87	DM3SWD	1200	17	bc	FT-817
88	OK1DSU	1170	17	c	HB TRX PA 2SC2078
89	OK1AGS	1166	17	abc	FT-817
90	DL5SE	1040	23	b	FT-817
91	HB9HQX *	1026	15	ab	OHR 100 (40m) DSW-II (80m)
92	RX3DOR	1012	13	bc	FT-817
93	OZ5DX	972	15	abc	HW-9
94	DR5E *	960	18	a	ECO-BU/PA (6CL6-5763)
95	OK1ARO	900	24	a	RM31a (military TRX ~1955, 16 heptal
tubes)	01111110	, 00			Take in (minima) That Type, is not may
96	DL1LAW	850	20	b	FT-7 (int. downregulated)
97	OK1JX	800	14		FT-817
				ab	
98	YL2TD	795	20	b	FT-817
99	DL3LQM/p*	756	21	b	NorCal 40A
100	DL3AKF *	722	11	bc	K2
101	DI OIDM di				Y737.4
101	DL3JPN *	675	15	b	KX1
102	DL1MEB *	645	18	bc	K2
103	DK5RY/p	630	12	c	FT-817
104	G8PG	599	12	b	FT-817
105	DL7UGN *	585	15	abc	HW-9
106	UT5DJ	570	11	c	Efir-M
107	DJ1TM	507	15	ab	BCR FT-817
107	F6FTB *	444	10	b	KX1
108	ON5AO	442	10		K2
				C	
110	DL3ARW *	432	12	b	Tramp (copy) PA 2SC2078
111	DH3SW	372	10	b	FT-817
112	DL4HSI	351	12	abc	FT-817
113	IK1ZYW	338	8		FT-817
				bc 1	
114	OE6WTD	297	9	b	QRP+
115	DK3RED *	288	11	b	K2
116	DL8MTG *	280	7	b	K1
117	DL6AWJ	270	15	ab	K2
118	DJ1KAI *	231	6	b	SW-40
119	DJ7JE *	207	11	b	Mosquita (DDS-VFO)
120	M0AVN	192	6	c	NorCal 20
120	111011111	1/4	J	·	1,01,041,20

121	DL1JBE	184	8	b	FT-817
122	DL4RU	138	8	ab	FT-817
123	DL9GTI	126	6	ab	FT-817
124	OE1TKW	120	5	ab	Sierra
125	OK1FKD	96	4	c	K2
126	DL7UWE *	96	6	a	HB TRX, IF 5,2 MHz, PA 2x BD139 3W
127	PA0FEI	91	4	bc	TS-130V
128	M0ROA/p	48	3	c	FT-817
129	DF0GIF *	45	3	c	CO(x5er)-DR-PA (2N1711-2xBC301-
B25/12)					
130	RV3GM	32	2	bc	K2
131	DL1RNN	32	2	bc	K2
132	DJ7RS	24	3	a	GRC-9
133	DH0JAE	8	1	b	Hegau
134	W7DRA *	2	2	b	CO-PA (6AU6-5763)
	MP		<=20 Wa	<mark>.tt</mark>	
Platz	MP Call	Punkte	<=20 Wa	tt Band	Rig
Platz		Punkte			Rig
Platz		Punkte			Rig TRX "Ocean 04" + PA 15W
1 2	Call		QSOs	Band	-
1	Call OM7DX *	79249	QSOs 302	Band abc	TRX "Ocean 04" + PA 15W
1 2	Call OM7DX * YO6EX *	79249 37674	QSOs 302 180	Band abc bc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180
1 2 3	Call OM7DX * YO6EX * DJ3XK	79249 37674 32560	QSOs 302 180 127	Band abc bc abc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7
1 2 3 4	Call OM7DX * YO6EX * DJ3XK LY2LF *	79249 37674 32560 19908	QSOs 302 180 127 106	Band abc bc abc bc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7 HB TRX (RA3AO design PA KT922B), 20W
1 2 3 4 5	Call OM7DX * YO6EX * DJ3XK LY2LF * DR2006H	79249 37674 32560 19908 18304	QSOs 302 180 127 106 100	Band abc bc abc bc abc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7 HB TRX (RA3AO design PA KT922B), 20W FT-7
1 2 3 4 5 6	Call OM7DX * YO6EX * DJ3XK LY2LF * DR2006H DF5LW	79249 37674 32560 19908 18304 5066	QSOs 302 180 127 106 100 48	Band abc bc abc bc abc abc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7 HB TRX (RA3AO design PA KT922B), 20W FT-7 TS-120V
1 2 3 4 5 6 7	Call OM7DX * YO6EX * DJ3XK LY2LF * DR2006H DF5LW DF4FA	79249 37674 32560 19908 18304 5066 4120	QSOs 302 180 127 106 100 48 31	Band abc bc abc bc abc abc abc abc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7 HB TRX (RA3AO design PA KT922B), 20W FT-7 TS-120V TS-130V
1 2 3 4 5 6 7 8	Call OM7DX * YO6EX * DJ3XK LY2LF * DR2006H DF5LW DF4FA EU6AA	79249 37674 32560 19908 18304 5066 4120 2079	QSOs 302 180 127 106 100 48 31 33	Band abc bc abc abc abc abc bc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7 HB TRX (RA3AO design PA KT922B), 20W FT-7 TS-120V TS-130V HB TRX (PA GU-19)
1 2 3 4 5 6 7 8 9	Call OM7DX * YO6EX * DJ3XK LY2LF * DR2006H DF5LW DF4FA EU6AA DK0LEN	79249 37674 32560 19908 18304 5066 4120 2079 1508	QSOs 302 180 127 106 100 48 31 33 19	Band abc bc abc bc abc abc abc abc abc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7 HB TRX (RA3AO design PA KT922B), 20W FT-7 TS-120V TS-130V HB TRX (PA GU-19) (IC703)
1 2 3 4 5 6 7 8 9	Call OM7DX * YO6EX * DJ3XK LY2LF * DR2006H DF5LW DF4FA EU6AA DK0LEN DL0SGN	79249 37674 32560 19908 18304 5066 4120 2079 1508 1430	QSOs 302 180 127 106 100 48 31 33 19 16	Band abc bc abc abc abc abc abc abc abc	TRX "Ocean 04" + PA 15W HB copy of Atlas-180 FT7 HB TRX (RA3AO design PA KT922B), 20W FT-7 TS-120V TS-130V HB TRX (PA GU-19) (IC703) IC-703

Checklogs:

DL2BIS DL2NBY G3RSD OH6NPV OK1KZ ON4IVU/p ON6EN OO0A/p RW4PL SP6LV

* = "Handmade

Sempre più bello e affollato questo contest, che si conferma l'appuntamento Qrp on-air più importante dell'anno.

L'elevatissimo numero di apparati autocostruiti impegnati durante la gara (quelli segnati con l'asterisco) e quello di apparati d'epoca, surplus o in kit, è un segno della passione che anima i partecipanti a questo evento. Fra gli apparati commerciali spicca l'uso dell'FT817.

Notiamo con piacere che anche il numero dei partecipanti italiani è in aumento.

PROSSIMI APPUNTAMENTI

From Ray, F6BQV, UFT Chairman:

Dear colleagues,

Aseach year we are hoping your members entering in the next EUCW 160mcontest. Fortunately it seems that the TOP BAND » is still a place where we can find the original « Ham Spirit ». I'm sure that your members woul be use it in CW .

This contest is a good bargain to meet us., 19 EUCW Societies was reprensented in the 2006 edition. No doubt that there will be more in 2007.

Thank you for spreading the information.

Best regards and

73's de RAY F6BOV

From the Organizers gang:

This is just tou remind you, the next EUCW Event.

On January 2007, 6 and 7, will happen the 6th EUCW 160m party, sponsored by the French EUCW Society, the Union Française des Télégraphistes, UFT.

We invite you, Presidents and trustees of the EUCW societies to spread out this information among your members.

As usually, the EUCW societies which own one or several callsigns assigned to them are invited to participate with.

Each QSO with a station using an EUCW Society official callsign is valued 10 points . So it could be a good bargain to encourage a lot of Hams to entry this event and having contacts with other EUCW Societies Official stations too.

Thank you to inform the EUCW 160m CW Checker, Ghislain, F6CEL (<u>f6cel@wanadoo.fr</u>) about the participation of such callsigns in the contest, to make the checking easier.

Alain, F6ENO has written a multi-language software, especially for this contest.

This soft is downloadable at : http://uft.net/downloadplus.php?lng=fr&catid=40 or on Alain.F6ENO's web page at : http://perso.orange.fr/f6eno/index.htm.ite

Please invite your members to download it and to try it.

If some bug could be found, please invite them too, to advise Alain/F6ENO, (F6ENO@wanadoo.fr), who will correct the mistake, as quickly as possible. In such a case, please don't worry, but help us.

Don't forget, it's a free soft written by a Ham for Hams.

At our knowledge, there is no other soft supporting the EUCW 160m CW Party. The complete contest rules are available on the UFT web pages at: http://uft.net/articles.php?lng=fr&pg=22&prt=1, in French language, which is the official text. The other are only translations as exact as possible. You can use the translator tool on the website, or the help file joint to the soft..

The list of the Official callsigns, which could be participating will be updated as it goes along of your information.

Other places to find the rules:

- AGCW web site: http://www.agcw.org/eucw/eu160.html (English) and

http://www.agcw.org/eucw/d/Deu160.html (German)

- QRZ.RU: http://www.qrz.ru/contest/detail.phtml?id=278 (Russian)

For all of your questions, please contact for:

Log checking: F6CEL, f6cel@wanadoo.fr Rules: F5NQL, f5nql@aol.com or f5nql@arrl.net

Software: F6ENO, F6ENO@wanadoo.fr

73 from The EUCW 160m CW Party organizers gang.

F6CEL, F6ENO, F5NQL.

39

Vogliamo segnalarvi qui di seguito due simpatici eventi. Più che dei veri contest sono degli incontri, delle occasioni per divertirsi e trovare vecchi amici. Il primo è dedicato agli appassionati del "Bug" o tasto semiautomatico. Anche per chi non lo adopera è una buona occasione per ascoltare la sua "musica".

AGCW Semi-Automatic Key Evening

Sponsored by Arbeitsgemeinschaft Telegrafie e.V. (AGCW-DL)

Date: Annually on the 3rd Wednesday in February (21 febbraio 2007)

Time: 1900 - 2030 UTC

Participants: All licensed amateurs using a semi automatic key (bug). No hand keys or elbugs.

Bands: 3540 - 3560 kHz.

Mode: CW (A1A). The use of automatic CW decoders is not allowed.

Call: CQ BUG

Exchange: RST + QSO-No./the year the OP used a bug successfully for the first time. Example: 579001/61

Scoring: Every complete QSO counts one point. Each station may be worked once.

Every participant having at least 10 QSOs can give a bonus of 5 points to another OP for excellent usage of his bug.

SWL logs must contain both callsigns and at least one report.

Logs: Columns: UTC, Call, exchange sent, exchange received, points, bug type, serial number of bug and year of production.

Send your logs to:

Ulf-Dietmar Ernst, DK9KR
Elbstr. 60
D-28199 BREMEN
GERMANY
Deadline is March 15.

Prizes.

There are awards for the first, second and third place and placement cards for each entrant. Karl, DJ8HL, AGCW-No. 1627, sponsored an original Vibroplex bug as a challange trophy. It will be presented to the winner on the occasion of the "CW-Weekend" in a place called "Fuchskaute" in central Germany each May. The bug will be owned by the operator who won the contest three times.

Note:

Non observance of the rules will lead to disqualification!

All logs must contain a declaration that the contest rules have been respected. Send SASE or SAE plus one IRC to receive a list of the results (Be sure to add your complete postal address). The results will also be posted to the AGCW board of the Packet Radio BBS network and to the AGCW home page. Additionally, they will be published in "AGCW-Info".

More info at:

AGCW Web Site: http://www.agcw.de/

Il secondo incontro, molto simpatico, ci permette di collegare le YL dedite alla telegrafia :

AGCW YL CW Party

Sponsored by Arbeitsgemeinschaft Telegrafie e.V. (AGCW-DL)

Date: Annually on the 1st Tuesday in March (Instead of the YL-CW-Net usually held at this time).

(7 marzo 2007)

Time: 1900 - 2100 UTC

Participants: All licensed amateurs and SWLs.

Bands: 3520 - 3560 kHz.

Mode: CW (A1A). The use of keyboards and automatic CW decoders is not allowed.

Call: YLs call "CQ TEST", OMs call "CQ YL"

Categories: YLs - OMs - SWL

 $\textbf{Exchange: } RST + QSO\text{-No./"YL" name.} \quad \text{- } OMs = RST + QSO\text{-No./name.}$

Scoring system: QSO points: YL/YL-QSO = 3 Points OM/YL-QSO = 1 Point OM/OM-QSO = 0 Point

Extra points: Each worked country counts one point (no multiplier, just add to the QSO-Points).

Final score: Sum of QSO points and extra points.

SWL: Each complete noted QSO counts 3 Points, partly noted QSOs are counted proportionately, extra

points for each heard country.

Logs: Header with call, name and address.

Columns: UTC, Call, exchange sent, exchange received, name of OP, Points. At the end claimed score and

signature.

Deadline is March 31.

Send your logs to:

Dr. Roswitha Otto, DL6KCR

Eupener Str. 62 D-50933 KÖLN GERMANY

Each participant will receive a placement card. The "winner" will receive a nice gift; in this sense everyone was a winner in the past. Even small logs are very welcome!

Prizes: There are awards for the first, second and third place in each category and placement cards for each entrant.

Note: Non observance of the rules will lead to disqualification!

All logs must contain a declaration that the contest rules have been respected. Send SASE or SAE plus one IRC to receive a list of the results (Be sure to add your complete postal address). The results will also be posted to the AGCW board of the Packet Radio BBS network and to the AGCW home page. Additionally, they will be published in "AGCW-Info".

More info at:

IORP Club

AGCW Web Site: http://www.agcw.de/

Per partecipare a questi incontri non bisogna essere "maghi" dei contest o del CW. Provate e vi divertirete!

BOLLETTINO GENNAIO 2007

Vi segnaliamo alcuni dei contest che si svolgeranno nei prossimi mesi e che prevedono la categoria Qrp:

Gennaio 2007:

1	09.00z - 12.00z			AGCW Happy New Year Contest
6	20.00z - 23.00z	7	04.00z - 07.00z	EUCW 160m Contest
13	12.00z	14	23.59z	MI.QRP Club January CW Contest
27	00.00z	28	23.59z	CQ 160Meter Contest
27	13.00z	28	13.00z	UBA DX Contest

Febbraio 2007:

3	16.00 z - 19.00z			AGCW Straight Key Party
10	12.00z	11	12.00z	Dutch PACC Contest
10	17.00z - 21.00z			FISTS Winter Sprint
11	00.00z - 04.00z			North American Sprint Contest
17	00.00z	18	24.00z	ARRL International DX Contest (CW)
24	00.00z	25	23.59z	CQ WW 160m Contest
24	13.00z	25	13.00z	UBA DX Contest
25	09.00z - 11.00z /	15.00	z - 17.00z	High Speed Club CW Contest

Marzo 2007:

3	00.00z	4	24.00z	ARRL International DX Contest (SSB)
3	04.00z - 06.00z			Wake-Up QRP Sprin
10	14.00z - 20.00z			AGCW QRP Contest
24	00.00z	25	23.59z	CQ WW WPX Contest

E per gli irriducibili "navigatori" questi sono i siti Web segnalati da Mario I3EME :

http://www.g3ycc.karoo.net/

http://www.zerobeat.net/qrp/dummy.html

http://members.aol.com/w3dx/index.html (heathkit page)

http://www.f6blk.net/main_fr.php?page=67

http://homepage.ntlworld.com/david_aldridge/projects.html

http://www.geocities.jp/qrper72/sdr40.html (molto interessante SDR)

http://www.ae5x.com/ (interessante per info su batterie)

http://www.oh5x.com/

http://people.freenet.de/dl4yhf/qrp/index.html

http://home.wanadoo.nl/cmulder/

http://chss3.montclair.edu/~pererat/telegraph.html (museo cw)

http://www.cq.hu/ha-qrp/

Riceviamo all'ultimo minuto:

The French Speaking Telegraphist Club's European QSO ON5CFT

Setting up the CFT's (Club Francophone Télégraphiste) European QSO.

Purpose:

Practising CW Telegraphy , being CW active , activating frequency bands.

We need passionate associates from each member state of the European Union (F - DL - SP - EA - ON - CT - HA - I a.s.o.) so as to have a CFT representative in each European Country.

Why:

Setting up a European CW QSO involves that an operator from one of the European countries takes up the role of a QSO Captain on Friday nights. This will enhance the QSO development of CFT in Europe.

How to proceed?

The CW operator should be a member of the CFT (subscription free).

Each Captain will be able to lead the QSO from his own QTH.

The procedure shall be quite simplified e.g. CQ CFT from F5GOV/N°CFT.

An ordinary CW key, a double paddle or an electronic key may be used.

Frequency:

QRG 3.520 Mhz + or - QRM.

Power '

Just mention if you are going to work with the normal power 100 Watts or QRP.

Time:

The QSO shall start at 20h00 UTC.

Please note:

In order to be able to set up a schedule, I need each subscriber to tell their Fridays of choice.

The schedule shall be found on website http://www.on5cft.be

If you are interested in the project, please contact on4ldl@skynet.be

EU member states : Belgium – Germany – Greece – France – Ireland – Italy – Luxembourg – the Netherlands – Austria – Portugal – Finland – Czech Republic – Denmark – Estonia – Cyprus – Latvia – Lithuania – Malta – Poland – Slovenia – Slovakia – Sweden – United Kingdom.

http://www.on5cft.be http://www.on4ldl.be

http://www.thn.uba.be

